Ball Lock Quality Products

Product Applications

Dayton Ball Lock Punches, Retainers, Matrixes, and Accessories are mainstays in industries with high-demand applications, including automotive and major appliance manufacturing. Because there is no need to pull a die from the press, removal and replacement of worn punches can reduce downtime and improve profitability.

Dayton Ball Lock Punches add longer tool life and improve finished part quality. For example, Dayton Jektole ${ }^{\circledR}$ Punches (slug ejection punches) provide increased punch to matrix clearance; can triple the number of cycles between punch regrinds; and extend tool life.

Dayton Ball Lock Matrixes include Ball Lock, Press Fit, and EDM Matrix Blanks.

Dayton Ball Lock Retainers provide many features, functions, and benefits. For example, Dayton True Position ${ }^{\oplus}$ Retainers (the recognized industry standard) eliminate hand fitting; reduce mounting time, and are ideally suited for both round and complexshaped products. Other Dayton Retainers include Multi-Position ${ }^{T M}$, End and Square, Single Punch, and our unique line of $E Z$ Fit ${ }^{T M}$ Retainers-a simpler, better way to reconfigure and/or replace existing retainers.

Dayton Ball Lock Accessories (e.g., backing plugs, ball release tools, and urethane strippers) complete the full line of Dayton Ball Lock products, and can help speed
 up and improve production. For example, Dayton Punch Pullers (left photo) are simple and easy to use. Just slide the punch puller over the punch shank, rotate the built-in wrench until it is tight, release the ball, and pull down.

Ordering Information

Each page contains detailed instructions on how to order specific Dayton Ball Lock products. Individual product drawings completely define the product-including shape, dimensions, tolerances, and concentricity. When ordering, you are asked to specify quantity, product type, shank and length codes, and point or hole size (for example).

In the example below, the type specified is "HPR." "H" stands for heavy duty, "P" stands for punch, and "R" stands for rectangle. 50 is the shank diameter, which is coded by the first two digits of the decimal equivalent (.500"). 275 is the overall length, which is coded by inches and quarterinches (2.75"). Finally, P. 350 and W. 190 represent the point or hole size dimension.

HOW TO ORDER

Standard Alterations

Punches, matrixes, and retainers are available in sizes other than those listed in the catalog.
When ordering, you are asked to specify different designations for various non-standard dimensions. For example, if the P and W dimensions are outside the standard range, an " X " is placed in front of the P or W dimension, e.g., "XP" and/or "XW." If the point length is longer or shorter than standard, designate "XB" for the point length. See the foldout tabs in the individual product sections for these and other special order designations.

Punches (contd)

LJB/LPB Blanks 22
-Light Duty
Jektole ${ }^{\oplus} /$ Regular
LK_/LZ_—Light Duty 23
Point Larger than Shank Jektole $/$ /Regular
Matrixes

KD_Matrixes-Press Fit 25
Round/Shape

Retainers

HRP/LRP Retainers 26
-Heavy Duty/Light Duty
Multi-Position ${ }^{\text {TM }} \quad-2$

HRT/LRT Retainers 27

-Heavy Duty/Light Duty
True Position ${ }^{\circledR}$

HRTB Single Punch 28
-Heavy Duty with Backing Plate
True Position ${ }^{\circledR}$

Retainers (cont'd)

Miscellaneous/Other

Classified Shapes 32,33

Accessories Retainers/Punches	$\left.\begin{array}{l}34,35 \\ \text { Jektole }{ }^{\oplus} \text { Data } \\ \\ \\ \end{array}\right]$

Locking Devices 38

Urethane Strippers 39

Product Designation

Each page contains detailed instructions on how to order specific Dayton Ball Lock products. In addition, use the following chart to define the product as a part number.

Diameter (D) is shown on the order as a two- or threedigit code. To convert the shank diameter to the appropriate code, use the following chart.

Code	D	Code	D	Code	D
12	. 1250	50	. 5000	150	1.5000
18	. 1875	62	. 6250	175	1.7500
25	. 2500	75	. 7500	200	2.0000
31	. 3125	87	. 8750	225	2.2500
37	. 3750	100	1.0000	250	2.5000
43	. 4375	125	1.2500	275	2.7500

Classified Shapes

Classified shapes (83 common shapes, no detailing required) are available on all punches, matrixes, and guide bushings, as indicated in this catalog. See pp. 32, 33 for more information and special instructions. Also, see individual product pages and p. 38 for additional information on orientation and views

Clearance

Normal grinding methods produce:
(1. 007 max. fillet on the punchmatching corner shape on the matrix.

(2. 007 max. fillet on the matrixmatching corner shape on the punch.

Contents

Jektole
Punches

Regular
 Punches勧官

Regular Pilots䄳落缺

Positive Pick－Up鹳
Pilots

Punch Blanks新䍈

Point Larger than䇠 Shank Punches

Matrixes

Retainers／ Retainer Inserts

Classified Shapes／
Miscellaneous

Jektolé Punches
 Heavy Duty

Material

Steel: A2, M2, PS4, RC 60-63
Round $\mathrm{P}_{-0}^{+.00000} \quad \bigcirc .0005$ P to D
Shape P, W $\pm .0005 \quad \bigcirc \quad 0.001$ P to D

*J2 ($\mathrm{P}=.062$ - .079), J3 ($\mathrm{P}=.080-.1149$), J4 ($\mathrm{P}>.1150$)
**See p. 37 for additional information.

Jektole Punches
 Heavy Duty

Features/Benefits

Jektole ${ }^{\circledR}$ punches permit doubling punch to matrix clearance; produce up to three times the number of hits between sharpenings; and reduce burr heights.

HOW TO ORDER					
Specify: Oty.	Type	D Code	L	P (or P\&W)	Steel
Example: 25	HJX	37	C300	P. 175	A2
12	HJO	75	450	P.692, W. 312	M2

Standard Ball Seat Locations

Standard Ball Seat Location is at 90°. Alternate locations of $0^{\circ}, 180^{\circ}$, or 270° can be specified at no additional cost.

Custom Ball Seat Locations

Custom Ball Seat Locations can be specified as "BS" and degrees counterclockwise from 0°. For additional
 information, see "Locking Devices" on p .38.

Double Ball Seat

A second ball seat may be specified. Normally located 180° from the primary ball seat, these are used to minimize sharpening of notching punches by rotating the punch 180°. Specify "SB" and degree desired. A second ball can also be located 90° from the primary
 ball seat.
Not recommended for diameters under 750 .

Standard Alterations

Jektole ${ }^{\oplus}$ punches are available in sizes other than those shown in the chart to the left.

When ordering, you are asked to specify different designations for various non-standard dimensions. For example, if the P and W dimensions are outside the standard range, an " X " is placed in front of the P or W dimension, e.g., "XP" and/or "XW." If the point length is other than standard, designate " $X B$ " as the point length. Also see "Standard Alterations" on the front of the pullout tab in this section for other special order designators.

Surface Coatings

Some catalog products can be coated to increase hardness, reduce galling, and improve wear and/or corrosion resistance. The available coatings are listed below. Also, see the chart at the bottom of this page for delivery times.

DayTride ${ }^{\circledR}$ (XN)—a low-cost surface application that treats all exposed surfaces. Ideal for punches and matrixes. Provides high dimensional stability. Approx. hardness: RC73.
DayTiN ${ }^{\circledR}$ (XNT)—applied via PVD (physical vapor deposition). Provides extreme hardness (hard as carbide) and excellent lubricity when used with a lubricant. Not recommended for stainless steel, copper, or nickel. Approx. hardness: *Vickers 2300

DayTAN ${ }^{\text {TM }}$ (XAN)—ultra-hard, high-aluminum PVD coating. Absorbs shear stress and provides high temperature resistance. Ideal for HSLA, dual phase, and TRIP steels. Approx. hardness: *Vickers 3400.

DayKote ${ }^{\text {TM }}$ (XND)—used for extrusion/forming applications. Should not be used with a lubricant. Not recommended for stainless steel, copper, or nickel. Tolerance is $\pm .0002$ ". Approx. hardness: *Vickers 2300.

TiCN (XCN)—very hard PVD, thin film. Provides ultra hardness (harder than carbide) and superior abrasive wear resistance. Approx. hardness: *Vickers 3000.

MoST $^{\text {TM }}$ (XNM)—PVD, solid film. Produces lower coefficient of friction than other coatings. Provides excellent lubricity. Approx. hardness: *Vickers 2000.

XNP—the ultimate coating for extrusion and forming applications. Also works well in shaving operations. Tolerance is $\pm .0002$ ". Approx. hardness: *Vickers 3100.

DayKool ${ }^{\text {TM }}$ (XCR)—cryogenic steel conditioning process, used primarily with hard, thick materials. Improves strength, toughness, and dimensional stability.

Code/Delivery		Material
XN -DayTride ${ }^{\text {® }}$	+ 3 days	M2 \& PS4
XNT -DayTiN ${ }^{\text {® }}$	+ 3 days	M2 \& PS4
XAN - DayTAN ${ }^{\text {™ }}$	+ 4 days	M2 \& PS4
XND - DayKote ${ }^{\text {TM }}$	+ 8 days	M2 \& PS4
XCN - TiCN	+ 3 days	M2 \& PS4
XNM - MoST ${ }^{\text {™ }}$	+ 7 days	M2 \& PS4
XNP	+ 8 days	M2 \& PS4
XCR - DayKool ${ }^{\text {M }}$	+ 1 day	M2 \& PS4

*Vickers used when RC exceeds 80
${ }^{\circledR}$ DayTride and DayTiN are registered trademarks of Dayton Progress.
${ }^{\text {tM }}$ DayTAN, DayKote, and DayKool are trademarks of Dayton Progress. MoST is a trademark of lonBond ${ }^{(3)}$ Inc.

Standard Alterations

Jektole ${ }^{\circ}$ Punches-Heavy Duty

$X P, X W \underset{\substack{P \\ \text { Smaller than Standard }}}{\substack{\text { Dimensions }}}$ Smaller than Standard

XB Point Length

Other than Standard
For XBB, add three days to delivery.

	XB								XBB
Point Length	$\begin{aligned} & .5001 .6251- \\ & .6250 .7500 \end{aligned}$	$\begin{aligned} & .7501- \\ & .8750 \end{aligned}$	$\begin{array}{r} .8751- \\ 1.0000 \end{array}$	$\begin{aligned} & 1.0001- \\ & 1.1250 \end{aligned}$	$\begin{aligned} & 1.1251- \\ & 1.2500 \end{aligned}$	$\begin{aligned} & 1.2501- \\ & 1.3750 \end{aligned}$	$\begin{aligned} & 1.3751- \\ & 1.5000 \end{aligned}$	$\begin{aligned} & 1.5001- \\ & 1.6250 \end{aligned}$	$\begin{aligned} & 1.6261- \\ & 2.0001 \end{aligned}$
Code Type	Min. P (Rounds)								
37 HJX	.062 .062.158.158.235.300.350	. 080	. 080	. 115	. 115	. 115	. 115	. 115	
50 HJX		. 158	. 158	. 158	. 158	. 158	. 158	. 158	. 187
62 HJX		. 158	. 158	. 158	. 158	. 158	. 158	. 158	. 187
75 HJX		. 235	. 235	. 235	. 235	. 235	. 235	. 235	. 281
87 HJX		. 300	. 300	. 300	. 300	. 300	. 300	. 300	. 350
100 HJX		. 350	. 350	. 350	. 350	. 350	. 350	. 350	. 350
125 HJX		. 450	. 450	. 450	. 450	. 450	. 450	. 450	. 450
	Min. W (Shapes)								
37 HJ	$\begin{array}{r} .062 .062 \\ .158 \\ .158 \\ .235 \\ .235 \\ .235 \end{array}$. 080	. 080	. 115	. 115	. 115	. 115	. 115	
50 HJ		. 158	. 158	. 158	. 158	. 158	. 158	. 158	. 187
62 HJ		. 158	. 158	. 158	. 158	. 158	. 158	. 158	. 187
75 HJ		. 235	. 235	. 235	. 235	. 235	. 235	. 235	. 281
87 HJ		. 235	. 235	. 235	. 235	. 235	. 235	. 235	. 281
100 HJ		. 235	. 235	. 235	. 235	. 235	. 235	. 235	. 281
$125 \mathrm{HJ}_{-}$. 281	. 281	. 281	. 281	. 281	. 281	. 281	. 281

XL Overall Length Shortened
Stock removal from point end which shortens B length.

XJ Smaller Jektole ${ }^{\text {Componts }}$
 See p. 37

XK No sidehole
For air injection. No cost.

SBR Straight Before Radius

To determine Length of Radius Blend (LRB)

1. Calculate (D-P)/2
2. Find (D-P)/2 value on left side of chart.
3. Follow line over to intersection point on radius blend line.
4. Read LRB value on bottom of chart.

Example:

$D=.375$

$(D-P) / 2=(.375-.175) / 2=.100$
Following the .100 line on chart over the radius blend line shows the LRB to be approximately .300

Regular Punches
 Heavy Duty

Material

Steel: A2, M2, PS4, RC 60-63

Regular Punches
 Heavy Duty

Features/Benefits

Regular punches provide three times better alignment than other major brands; offer longer tool life; and can significantly improve finished part quality.

HOW TO ORDER

Specify:	Qty.	Type	\mathbf{D} Code	\mathbf{L}	\mathbf{P} (or P\&W)	Steel
Example: 16	HPX	62	B375	P.370	M2	
7	HPR	50	300	P.327, W. 254	A2	

Standard Ball Seat Locations

Standard Ball Seat Location is at 90°. Alternate locations of $0^{\circ}, 180^{\circ}$, or 270° can be specified at no additional cost.

Custom Ball Seat Locations

Custom Ball Seat Locations can be specified as "BS" and degrees counterclockwise from 0°. For additional
 information, see "Locking Devices" on p .38.

Double Ball Seat

A second ball seat may be specified. Normally located 180° from the primary ball seat, these are used to minimize sharpening of notching punches by rotating the punch 180°. Specify "SB" and degree desired. A second ball can also be located 90° from the primary
 ball seat.
Not recommended for diameters under . 500 .

Standard Alterations

Regular Ball Lock punches are available in sizes other than those shown in the chart to the left.

When ordering, you are asked to specify different designations for various non-standard dimensions. For example, if the P and W dimensions are outside the standard range, an " X " is placed in front of the P or W dimension, e.g., "XP" and/or "XW." If the point length is other than standard, designate " XB " as the point length. Also see "Standard Alterations" on the front of the pullout tab in this section for other special order designators.

Surface Coatings

Some catalog products can be coated to increase hardness, reduce galling, and improve wear and/or corrosion resistance. The available coatings are listed below. Also, see the chart at the bottom of this page for delivery times.

DayTride ${ }^{\circledR}$ (XN)—a low-cost surface application that treats all exposed surfaces. Ideal for punches and matrixes. Provides high dimensional stability. Approx. hardness: RC73.
DayTiN ${ }^{\circledR}$ (XNT)—applied via PVD (physical vapor deposition). Provides extreme hardness (hard as carbide) and excellent lubricity when used with a lubricant. Not recommended for stainless steel, copper, or nickel. Approx. hardness: *Vickers 2300

DayTAN ${ }^{\text {M }}$ (XAN)—ultra-hard, high-aluminum PVD coating. Absorbs shear stress and provides high temperature resistance. Ideal for HSLA, dual phase, and TRIP steels. Approx. hardness: *Vickers 3400.

DayKote ${ }^{\text {TM }}$ (XND)—used for extrusion/forming applications. Should not be used with a lubricant. Not recommended for stainless steel, copper, or nickel. Tolerance is $\pm .0002$ ". Approx. hardness: *Vickers 2300.

TiCN (XCN)—very hard PVD, thin film. Provides ultra hardness (harder than carbide) and superior abrasive wear resistance. Approx. hardness: *Vickers 3000.

MoST $^{\text {TM }}$ (XNM)—PVD, solid film. Produces lower coefficient of friction than other coatings. Provides excellent lubricity. Approx. hardness: *Vickers 2000.

XNP—the ultimate coating for extrusion and forming applications. Also works well in shaving operations. Tolerance is $\pm .0002$ ". Approx. hardness: *Vickers 3100.

DayKool ${ }^{\text {TM }}$ (XCR)—cryogenic steel conditioning process, used primarily with hard, thick materials. Improves strength, toughness, and dimensional stability.

Code/Delivery		Material
XN -DayTride ${ }^{\text {® }}$	+ 3 days	M2 \& PS4
XNT -DayTiN ${ }^{\text {® }}$	+ 3 days	M2 \& PS4
XAN - DayTAN ${ }^{\text {™ }}$	+ 4 days	M2 \& PS4
XND - DayKote ${ }^{\text {TM }}$	+ 8 days	M2 \& PS4
XCN - TiCN	+ 3 days	M2 \& PS4
XNM - MoST ${ }^{\text {™ }}$	+ 7 days	M2 \& PS4
XNP	+ 8 days	M2 \& PS4
XCR - DayKool ${ }^{\text {M }}$	+ 1 day	M2 \& PS4

*Vickers used when RC exceeds 80
${ }^{\circledR}$ DayTride and DayTiN are registered trademarks of Dayton Progress.
tM DayTAN, DayKote, and DayKool are trademarks of Dayton Progress. MoST is a trademark of lonBond ${ }^{(3)}$ Inc.

Standard Alterations
 Regular Punches-Heavy Duty

XP, XW P and W Dimensions

XB Point Length

Other than Standard
For XBB and X3B, add three days to delivery.

	XB							XBB		B
Point Length								$\begin{aligned} & 1.6261 \\ & 2.0001 \end{aligned}$	$\begin{aligned} & 2.0001-2.5001-2.50003 .0000 \\ & 2 . \end{aligned}$	
Code Type	Min. P (Rounds)									
37 HPX	. 050.050 .080	. 080	. 106	. 115	. 115	. 115	. 115	. 187	. 250	. 312
50 HPX	- . 093.093	. 093	. 125	. 125	. 125	. 125	. 125	. 187	. 250	. 312
62 HPX	- . 125.125	. 125	. 158	. 158	. 158	. 158	. 158	. 187	. 250	. 312
75 HPX	- . 235.235	. 235	. 235	. 235	. 235	. 235	. 235	. 281	. 375	. 375
87 HPX	- . 300.300	. 300	. 300	. 300	. 300	. 300	. 300	. 350	. 375	. 437
100 HPX	- . 350.350	. 350	. 350	. 350	. 350	. 350	. 350	. 350	. 375	. 437
125 HPX	- . 450.450	. 450	. 450	. 450	. 450	. 450	. 450	. 450	450	. 450
				n. W (S	hapes)					
37 HP	. 050.050 .080	. 080	. 106	. 115	. 115	. 115	. 115	. 156		
50 HP	- . 093.093	. 093	. 125	. 125	. 125	. 125	. 125	. 156		
62 HP_	- . 125.125	. 125	. 158	. 158	. 158	. 158	. 158	. 187		
75 HP_	- . 235	. 235	. 235	. 235	. 235	. 235	. 235	. 250		
87 HP	. 235	. 235	. 235	. 235	. 235	. 235	. 235	. 250		
$100 \mathrm{HP}_{-}$	- . 235	. 235	. 235	. 235	. 235	. 235	. 235	. 250		
125 HP_	- -	. 235	. 235	. 235	. 235	. 235	. 235	. 265		

XL Overall Length Shortened
Stock removal from point end which shortens B length.

LL Precision Overall Length
Same as XL except overall length is held to $\pm .001$.

SBR Straight Before Radius

To determine Length of Radius Blend (LRB)

1. Calculate (D-P)/2.
2. Find (D-P)/2 value on left side of chart.
3. Follow line over to intersection point on radius blend line.
4. Read LRB value on bottom of chart.

Example

$\mathrm{D}=.375$
$\mathrm{P}=.175$

(D-P)/2=(.375-.175)/2=. 100
Following the .100 line on chart over the radius blend line shows the LRB to be approximately 300 .

Regular Pilots
 Heavy Duty

TH: Type

Material

Steel: A2, M2, PS4, RC 60-63
Round $\mathrm{P}_{-.0000}^{+.0005} \quad \bigcirc .0005 \mathrm{P}$ to D When $\mathrm{P}=\mathrm{D}$, shank tolerance applies.

*Slightly less for diameters under . 238 .

Regular Pllots
 Heavy Duty

Features/Benefits

Regular pilots are built to exact tolerances; the parabolic point shape allows for smooth pick-up action; and pilots offer a wide range of unique punching and fabrication applications.

HOW TO ORDER

Specify:	Qty.	Type	D Code	L	P	Steel
Example: 13	HPT	37	300	P. 175	A2	

Standard Alterations

Regular Ball Lock pilots are available in sizes other than those shown in the chart to the left.
When ordering, you are asked to specify different designations for various non-standard dimensions. For example, if the P dimension is outside the standard range, an " X " is placed in front of the P dimension, e.g., "XP." If the point length is other than standard, designate " XB " as the point length. Also see "Standard Alterations" on the front of the pullout tab in this section for other special order designators.

Surface Coatings

Some catalog products can be coated to increase hardness, reduce galling, and improve wear and/or corrosion resistance. The available coatings are listed below. Also, see the chart at the bottom of this page for delivery times.

DayTride ${ }^{\circledR}$ (XN)—a low-cost surface application that treats all exposed surfaces. Ideal for punches and matrixes. Provides high dimensional stability. Approx. hardness: RC73.
DayTiN ${ }^{\circledR}$ (XNT)—applied via PVD (physical vapor deposition). Provides extreme hardness (hard as carbide) and excellent lubricity when used with a lubricant. Not recommended for stainless steel, copper, or nickel. Approx. hardness: *Vickers 2300

DayTAN ${ }^{\text {TM }}$ (XAN)—ultra-hard, high-aluminum PVD coating. Absorbs shear stress and provides high temperature resistance. Ideal for HSLA, dual phase, and TRIP steels. Approx. hardness: *Vickers 3400.

DayKote ${ }^{\text {TM }}$ (XND)—used for extrusion/forming applications. Should not be used with a lubricant. Not recommended for stainless steel, copper, or nickel. Tolerance is $\pm .0002$ ". Approx. hardness: *Vickers 2300.

TiCN (XCN)—very hard PVD, thin film. Provides ultra hardness (harder than carbide) and superior abrasive wear resistance. Approx. hardness: *Vickers 3000.

MoST $^{\text {TM }}$ (XNM)—PVD, solid film. Produces lower coefficient of friction than other coatings. Provides excellent lubricity. Approx. hardness: *Vickers 2000.

XNP—the ultimate coating for extrusion and forming applications. Also works well in shaving operations. Tolerance is $\pm .0002$ ". Approx. hardness: *Vickers 3100.

DayKool ${ }^{\text {TM }}$ (XCR)—cryogenic steel conditioning process, used primarily with hard, thick materials. Improves strength, toughness, and dimensional stability.

Code / Delivery		Material
XN -DayTride ${ }^{\text {® }}$	+ 3 days	M2 \& PS4
XNT -DayTiN ${ }^{\text {® }}$	+ 3 days	M2 \& PS4
XAN - DayTAN ${ }^{\text {™ }}$	+ 4 days	M2 \& PS4
XND - DayKote ${ }^{\text {TM }}$	+ 8 days	M2 \& PS4
XCN - TiCN	+ 3 days	M2 \& PS4
XNM -MoST ${ }^{\text {™ }}$	+ 7 days	M2 \& PS4
XNP	+ 8 days	M2 \& PS4
XCR - DayKool $^{\text {™ }}$	+ 1 day	M2 \& PS4

*Vickers used when RC exceeds 80
${ }^{\circledR}$ DayTride and DayTiN are registered trademarks of Dayton Progress.
${ }^{\text {TM DayTAN, DayKote, and DayKool are trademarks of Dayton Progress. }}$ MoST is a trademark of lonBond ${ }^{(3)}$ Inc.

Standard Alterations

Regular Pilots-Heavy Duty

Smaller than Standard

XB Point Length
 Other than Standard

For XBB and X3B, add three days to delivery.

XL Overall Length Shortened

Stock removal from point end which shortens B length.

SBR Straight Before Radius

To determine Length of Radius Blend (LRB)

1. Calculate (D-P)/2.
2. Find (D-P)/2 value on left side of chart.
3. Follow line over to intersection point on radius blend line.
4. Read LRB value on bottom of chart.

Example:

$\mathrm{D}=.375$
$\mathrm{P}=.175$

(D-P)/2=(.375-.175)/2=. 100
Following the .100 line on chart over the radius blend line shows the LRB to be approximately .300 .

Positive Pick-Up Pilots
 Heavy Duty

Material

Steel: M2, PS4, RC 60-63
All heads are drawn to RC 40-55.
Round $\mathrm{P}+.00005 \quad \bigcirc .0005 \mathrm{P}$ to D
When $P=D$, shank tolerance applies.

Order any length shown. If you require a length between those shown, designate "XL."
Example: You require a length of 3.600 . Order 375, then show XL 3.600. See "How to Order" example on the next page. XL is available down to 1.375 . Note shank length limitation of .75 .
(B length may be shorter than shown when XL is under the shortest length shown.)
There is no additional charge for XL.

Shank		Point		Round			L													
D	Code	Lgth. B	$\begin{array}{\|c} \hline \text { Min. } \\ \text { XP } \end{array}$	Range P	*N	Pn	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00	5.25		
. 375	37	. 625	. 083	. $186-.375$. 37	. 2342														
. 500	50	. 812	. 092	. $249-.500$. 50	. 3252														
. 625	62	. 937	. 124	. $311-.625$. 62	. 4162	250	275												
. 750	75	1.062	. 234	. 436 - .750	. 75	. 5072			300	325	350	375	400	425	450	475	500	525		
. 875	87	1.187	. 299	. $624-.875$. 87	. 5982														
1.000	100	1.250	. 349	.749-1.000	1.00	. 6892														
1.250	125	1.437	. 449	.999-1.250	1.25	. 8712														
. 375	37		. 083	. $186-.375$. 37	. 2342														
. 500	50		. 092	. $249-.500$. 50	. 3252	B250													
. 625	62		. 124	. $311-.625$. 62	. 4162	B250	B275												
. 750	75	. 75	. 234	. 436 - . 750	. 75	. 5072			B300	B325	B350	B375	B400	B425	B450	B475	B500	B525		
. 875	87		. 299	. $624-.875$. 87	. 5982														
1.000	100		. 349	.749-1.000	1.00	. 6892														
1.250	125		. 449	.999-1.250	1.25	. 8712														
. 375	37		. 083	. $186-.375$. 37	. 2342														
. 500	50		. 092	. $249-.500$. 50	. 3252														
. 625	62		. 124	. $311-.625$. 62	. 4162	C250	C275												
. 750	75	1.00	. 234	. $436-.750$. 75	. 5072			C300	C325	C350	C375	C400	C425	C450	C475	C500	C525		
. 875	87		. 299	. $624-.875$. 87	. 5982														
1.000	100		. 349	.749-1.000	1.00	. 6892														
1.250	125		. 449	.999-1.250	1.25	. 8712														
. 500	50		. 124	. $249-.500$. 50	. 3252														
. 625	62		. 157	. $311-.625$. 62	. 4162		D275												
. 750	75	1.25	. 234	. $436-.750$. 75	. 5072			D300	D325	D350	D375	D400	D425	D450	D475	D500	D525		
.875 1.000	87 100		. 299	.624-.875	.87 1.00	$\begin{aligned} & .5982 \\ & .6892 \end{aligned}$														
1.250	125		. 449	.999-1.250	1.25	. 8712														

* $\mathrm{N}=[(\mathrm{P}-.057) / .728]+.132$ when " P " dimension is less than "Pn" shown in chart.

Positive Pick-Up Pilots
 Heavy Duty

Greater positioningmoves stock farther than conventional pilots.

Features/Benefits

Positive pick-up pilots provide smoother pick-up without the risk of distorting the hole; in addition, the unique design moves the stock farther than conventional pilots.

HOW TO ORDER

Specify:	Qty.	Type	D Code	\mathbf{L}	\mathbf{P}	Steel
Example:	3	HPA	75	275	P. 624	M2

Standard Alterations

Ball Lock positive pick-up pilots are available in sizes other than those shown in the chart to the left.

When ordering, you are asked to specify different designations for various non-standard dimensions. For example, if the P dimension is outside the standard range, an " X " is placed in front of the P dimension, e.g., "XP." If the point length is other than standard, designate "XB" as the point length. Also see "Standard Alterations" on the front of the pullout tab in this section for other special order designators.

Surface Coatings

Some catalog products can be coated to increase hardness, reduce galling, and improve wear and/or corrosion resistance. The available coatings are listed below. Also, see the chart at the bottom of this page for delivery times.

DayTride ${ }^{\circledR}$ (XN)—a low-cost surface application that treats all exposed surfaces. Ideal for punches and matrixes. Provides high dimensional stability. Approx. hardness: RC73.
DayTiN ${ }^{\circledR}$ (XNT)—applied via PVD (physical vapor deposition). Provides extreme hardness (hard as carbide) and excellent lubricity when used with a lubricant. Not recommended for stainless steel, copper, or nickel. Approx. hardness: *Vickers 2300

DayTAN ${ }^{\text {TM }}$ (XAN)—ultra-hard, high-aluminum PVD coating. Absorbs shear stress and provides high temperature resistance. Ideal for HSLA, dual phase, and TRIP steels. Approx. hardness: *Vickers 3400.

DayKote ${ }^{\text {TM }}$ (XND)—used for extrusion/forming applications. Should not be used with a lubricant. Not recommended for stainless steel, copper, or nickel. Tolerance is $\pm .0002^{\prime \prime}$. Approx. hardness: *Vickers 2300.

TiCN (XCN)—very hard PVD, thin film. Provides ultra hardness (harder than carbide) and superior abrasive wear resistance. Approx. hardness: *Vickers 3000.

MoST $^{\text {TM }}$ (XNM)—PVD, solid film. Produces lower coefficient of friction than other coatings. Provides excellent lubricity. Approx. hardness: *Vickers 2000.

XNP—the ultimate coating for extrusion and forming applications. Also works well in shaving operations. Tolerance is $\pm .0002$ ". Approx. hardness: *Vickers 3100.

DayKool ${ }^{\text {TM }}$ (XCR)—cryogenic steel conditioning process, used primarily with hard, thick materials Improves strength, toughness, and dimensional stability.

Code/Delivery		Material
XN -DayTride ${ }^{\text {® }}$	+ 3 days	M2 \& PS4
XNT -DayTiN ${ }^{\text {® }}$	+ 3 days	M2 \& PS4
XAN - DayTAN ${ }^{\text {™ }}$	+ 4 days	M2 \& PS4
XND - DayKote ${ }^{\text {TM }}$	+ 8 days	M2 \& PS4
XCN -TiCN	+ 3 days	M2 \& PS4
XNM - MoST ${ }^{\text {TM }}$	+ 7 days	M2 \& PS4
XNP	+ 8 days	M2 \& PS4
XCR - DayKool ${ }^{\text {™ }}$	+ 1 day	M2 \& PS4

*Vickers used when RC exceeds 80
${ }^{\circledR}$ DayTride and DayTiN are registered trademarks of Dayton Progress.
${ }^{\text {TM DayTAN, DayKote, and DayKool are trademarks of Dayton Progress. }}$ MoST is a trademark of lonBond ${ }^{(3)}$ Inc.

Standard Alterations

Positive Pick-Up Pilots-Heavy Duty

XP P Dimensions
Smaller than Standard

XB Point Length

Other than Standard
Specify $\mathrm{XB}, \mathrm{XBB}$, or X 3 B and length (see chart below).

For XBB and X3B, add three days to delivery.

	XB								$\begin{aligned} & \text { XBB } \\ & 1.6251- \\ & 2.0001 \end{aligned}$	X3B $2.0001-2.5001-$ 2.50002 .0000	
Point Length			$\begin{array}{r} .8751-1 \\ \mathbf{1 . 0 0 0 0} \end{array}$	$\begin{aligned} & 1-1.0001- \\ & 0.1250 \end{aligned}$							
Code Type				Min.	Roun	nds)					
37 HPA	083	. 083.083	. 083	. 105	. 114	. 114	114	. 114	. 186	. 249	. 31
50 HPA	092	. 092.092	. 092	. 124	. 124	. 124	. 124	. 124	. 186	. 249	. 311
62 HPA	124	. 124.124	. 124	. 155	. 155	. 155	. 155	. 155	. 186	. 249	. 311
75 HPA	234	. 234.234	. 234	. 234	. 234	. 234	234	234	. 280	. 311	. 374
87 HPA	299	. 299.299	. 299	. 299	. 299	. 299	299	299	. 349	. 374	436
100 HPA	349	. 349.349	. 349	. 349	. 349	. 349	349	. 349	. 349	. 374	. 436
125 HPA	449	. 449.449	. 449	. 449	. 449	. 449	449	. 449	. 449	. 449	. 449

XL Overall Length Shortened
Stock removal from point end. B length is maintained.
Available at no charge within catalog range.

SBR Straight Before Radius

To determine Length of Radius Blend (LRB)

1. Calculate (D-P)/2.
2. Find (D-P)/2 value on left side of chart.
3. Follow line over to intersection point on radius blend line.
4. Read LRB value on bottom of chart.

Example:
$\mathrm{D}=.375$
$\mathrm{P}=.175$

(D-P)/2=(.375-.175)/2=. 100
Following the .100 line on chart over the radius blend line shows the LRB to be approximately .300 .

Punch Blanks Jektole \& Regular Heavy Duty

Type	Shank		L															$\begin{array}{\|c\|} \hline * \\ \text { Jektole } \\ \text { Group } \end{array}$
	D	Code	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00	5.25	5.50	5.75	6.00	
HJB	. 375	37																J4
	. 500	50																J6
	. 625	62	250	275														J6
	. 750	75			300	325	350	375	400	425	450	475	500			575		J9
	. 875	87												525	550	575	600	J9
	1.000	100																J9
	1.250	125																J12

Type	Shank		L																		
	D	Code	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00	5.25	5.50	5.75	6.00	6.25	6.50	6.75	7.00
HPB	. 375	37	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700
	. 500	50																			
	. 625	62																			
	. 875	87																			
	1.000	100																			
	1.250	125																			

*See p. 37 for additional information.

HOW TO ORDER

Specify:	Qty.	Type	D Code	L	Steel
Example:	12	HJB	50	300	M2
	5	HPB	75	400	A2

Point Larger than Shank Jektole ${ }^{\circ}$ \& Regular
 Heavy Duty

Material

Steel: A2, M2, RC 60-63.
Round $\mathrm{P}_{-.0000}^{+.0005} \quad \bigcirc .0005 \mathrm{P}$ to D
Shape P, W $\pm .0005 \quad \bigcirc \quad .001$ P to D
(1) Check your P\&W dimensions to be certain the diagonal G does not exceed the maximum shown.

Type	Shank D	Code	Point Lgth. B	Round Range P	Shape	L									Jektole ${ }^{\circledR}$ Group
					Min. Max. W P/G	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	
HK Regular	. 375	37	. 62	. 376 - . 875	. $125-.875$	250	275	300	325	350	375	400	425	450	J4
HZ^{-}	. 500	50	. 75	.501-1.250	.188-1.250										J6
Jektole ${ }^{\text {® }}$. 625	62	. 88	.626-1.500	.250-1.500										J6
Jektole	. 750	75	. 94	.751-1.500	.312-1.500										J9
	. 875	87	. 94	.876-1.750	.375-1.750										J9
	1.000	100	. 94	1.001-1.750	.437-1.750										J9
	1.250	125	1.25	1.251-2.000	.500-2.000										J12

*See p. 37 for additional information.

Standard Ball Seat Locations

Standard Ball Seat Location is at 90°. Alternate locations of $0^{\circ}, 180^{\circ}$, or 270° can be specified at no additional cost.

Custom Ball Seat Locations

Custom Ball Seat Locations can be specified as " BS " and degrees counterclockwise from 0°. For additional information, see "Locking Devices" on p. 38.

Double Ball Seat

A second ball seat may be specified. Normally located 180° from the primary ball seat, these are used to minimize sharpening of notching punches by rotating the punch 180°. Specify "SB" and degree desired. A second ball can also be located 90° from the primary ball seat.
Not recommended for diameters under .750 for HZ _ and .500 for HK

FIRM DELIVERY SCHEDULE 1-4 pcs., 2 Days 5-19 pcs., 3 Days

HOW TO ORDER

Specify:	Qty.	Type	D Code	L	P(or P\&W)	Steel
Example:	2	HKR	100	350	P1.350, W. 500	M2

Standard Alterations

Point Larger than Shank Ball Lock punches are available in sizes other than those shown in the chart above.

When ordering, you are asked to specify different designations for various non-standard dimensions. For example, if the P and W dimensions are outside the standard range, an " X " is placed in front of the P or W dimension, e.g., "XP" and/or "XW." If the point length is other than standard, designate "XB" as the point length. Also see "Standard Alterations" on the front of the pullout tab in this section for other special order designators.

Surface Coatings

Some catalog products can be coated to increase hardness, reduce galling, and improve wear and/or corrosion resistance. The available coatings are listed below. Also, see the chart at the bottom of this page for delivery times.

DayTride ${ }^{\circledR}$ (XN)—a low-cost surface application that treats all exposed surfaces. Ideal for punches and matrixes. Provides high dimensional stability. Approx. hardness: RC73.
DayTiN ${ }^{\circledR}$ (XNT)—applied via PVD (physical vapor deposition). Provides extreme hardness (hard as carbide) and excellent lubricity when used with a lubricant. Not recommended for stainless steel, copper, or nickel. Approx. hardness: *Vickers 2300.

DayTAN ${ }^{\text {TM }}$ (XAN)—ultra-hard, high-aluminum PVD coating. Absorbs shear stress and provides high temperature resistance. Ideal for HSLA, dual phase, and TRIP steels. Approx. hardness: *Vickers 3400.

DayKote ${ }^{\text {TM }}$ (XND)—used for extrusion/forming applications. Should not be used with a lubricant. Not recommended for stainless steel, copper, or nickel. Tolerance is $\pm .0002$ ". Approx. hardness: *Vickers 2300.

TiCN (XCN)—very hard PVD, thin film. Provides ultra hardness (harder than carbide) and superior abrasive wear resistance. Approx. hardness: *Vickers 3000.

MoST $^{\text {TM }}$ (XNM)—PVD, solid film. Produces lower coefficient of friction than other coatings. Provides excellent lubricity. Approx. hardness: *Vickers 2000.

XNP—the ultimate coating for extrusion and forming applications. Also works well in shaving operations. Tolerance is $\pm .0002$ ". Approx. hardness: *Vickers 3100.

DayKool ${ }^{\text {TM }}$ (XCR)—cryogenic steel conditioning process, used primarily with hard, thick materials. Improves strength, toughness, and dimensional stability.

Code/Delivery		Material
XN -DayTride ${ }^{\text {® }}$	+ 3 days	M2 \& PS4
XNT -DayTiN ${ }^{\text {® }}$	+ 3 days	M2 \& PS4
XAN - DayTAN ${ }^{\text {™ }}$	+ 4 days	M2 \& PS4
XND - DayKote ${ }^{\text {TM }}$	+ 8 days	M2 \& PS4
XCN -TiCN	+ 3 days	M2 \& PS4
XNM - MoST ${ }^{\text {TM }}$	+ 7 days	M2 \& PS4
XNP	+ 8 days	M2 \& PS4
XCR - DayKool ${ }^{\text {™ }}$	+ 1 day	M2 \& PS4

*Vickers used when RC exceeds 80
${ }^{\circledR}$ DayTride and DayTiN are registered trademarks of Dayton Progress.
${ }^{\text {TM DayTAN, DayKote, and DayKool are trademarks of Dayton Progress. }}$ MoST is a trademark of lonBond ${ }^{(3)}$ Inc.

Standard Alterations

Point Larger than Shank-Heavy Duty

XB ${ }^{\text {Point Length }}$ Other than Standard (Shortens punch from the point end.)

XL Overall Length Shortened Stock removal from shank end. Minimum shank length is $1 \frac{1}{16}{ }^{\prime \prime}$. Does not alter ball seat location.

Dayton Slug Control

Dayton Slug Control is a patented, guaranteed method for reducing the risk of pulling slugs to the die surface during withdrawal of the punch. A series of grooves is designed inside the matrix (see drawing). There, the slugs are trapped until they fall freely through the relief. The use of Dayton Slug Control has no effect on hole size, and will not require any changes in current regrind practices.

Our guarantee: Use Dayton Slug Control in a stamping die now pulling slugs. If, for any reason, you are not completely satisfied, we will refund the full cost of the Slug Control alteration. (We cannot guarantee the retention of slugs when clearance exceeds 10% per side.)

Ordering

Dayton Slug Control is easy to specify and order. Simply add the information that is unique to your application to the matrix catalog number. Please specify XSC for alteration and show material thickness (inches) and clearance per side (percentage).

HOW TO ORDER

Catalog Number					Your Specs		
Inch	KDX	62	100	P. 250	XSC	MT. 0625	CS 5
	Type	D	L	P	Alt. Code	Mat'l Thickness (inches)	Clear Per Side (\%)

For additional information, contact your Dayton distributor.

Jektole® Punches
 Light Duty

Material

Steel: A2, M2, PS4, RC 60-63
Round $\mathrm{P}{ }_{-.0000}^{+.0005}$
Shape P, W ${ }^{ \pm .0005}$ \square

*J2 ($\mathrm{P}=.050-.0799$) J3 ($\mathrm{P}=>.080$)
**See p. 37 for additional information.

Jektole® Punches Light Duty

LJX		LJR		LJ	LJH
$\left(\theta^{\circ}\right){ }^{1}$		$\bar{\circ}$	e_{-w-1}^{p}		用?
Check your	LJJ	LJN	LJV	LJ	LJZ
	$\underbrace{}_{-w-\frac{w}{2}}$	wo		${ }^{\circ}$	

Standard Ball Seat Locations

Standard Ball Seat Location is at 90°. Alternate locations of $0^{\circ}, 180^{\circ}$, or 270° can be specified at no additional cost.
Custom Ball Seat Locations
Custom Ball Seat Locations can be specified as "BS" and degrees counterclockwise from 0°. For additional information, see "Locking Devices" on p .38.

Double Ball Seat

A second ball seat may be specified. Normally located 180° from the primary ball seat, these are used to minimize sharpening of notching punches by rotating the punch 180°. Specify "SB" and degree desired.
 A second ball can also be located 90° from the primary ball seat.
Not recommended for diameters under 625.

Jektole ${ }^{\circledR}$ punches permit doubling punch to matrix clearance; produce up to three times the number of hits between sharpenings; and reduce burr heights.

HOW TO ORDER						
Specify:	Qty.	Type	D Code	L	P (or P\&W)	Steel
Example: 21	LJX	37	325	P.175	A2	
15	LJR	50	400	P.327, W. 254	M2	

Standard Alterations

Jektole ${ }^{\circledR}$ punches are available in sizes other than those shown in the chart to the left.

When ordering, you are asked to specify different designations for various non-standard dimensions. For example, if the P and W dimensions are outside the standard range, an " X " is placed in front of the P or W dimension, e.g., "XP" and/or "XW." If the point length is other than standard, designate "XB" as the point length. Also see "Standard Alterations" on the front of the pullout tab in this section for other special order designators.

Surface Coatings

Some catalog products can be coated to increase hardness, reduce galling, and improve wear and/or corrosion resistance. The available coatings are listed below. Also, see the chart at the bottom of this page for delivery times.

DayTride ${ }^{\circledR}$ (XN)—a low-cost surface application that treats all exposed surfaces. Ideal for punches and matrixes. Provides high dimensional stability. Approx. hardness: RC73.
DayTiN ${ }^{\circledR}$ (XNT)—applied via PVD (physical vapor deposition). Provides extreme hardness (hard as carbide) and excellent lubricity when used with a lubricant. Not recommended for stainless steel, copper, or nickel. Approx. hardness: *Vickers 2300.

DayTAN ${ }^{\text {TM }}$ (XAN)—ultra-hard, high-aluminum PVD coating. Absorbs shear stress and provides high temperature resistance. Ideal for HSLA, dual phase, and TRIP steels. Approx. hardness: *Vickers 3400.

DayKote ${ }^{\text {TM }}$ (XND)—used for extrusion/forming applications. Should not be used with a lubricant. Not recommended for stainless steel, copper, or nickel. Tolerance is $\pm .0002^{\prime \prime}$. Approx. hardness: *Vickers 2300.

TiCN (XCN)—very hard PVD, thin film. Provides ultra hardness (harder than carbide) and superior abrasive wear resistance. Approx. hardness: *Vickers 3000.

MoST $^{\text {TM }}$ (XNM)—PVD, solid film. Produces lower coefficient of friction than other coatings. Provides excellent lubricity. Approx. hardness: *Vickers 2000.

XNP—the ultimate coating for extrusion and forming applications. Also works well in shaving operations. Tolerance is $\pm .0002$ ". Approx. hardness: *Vickers 3100.

DayKool ${ }^{\text {TM }}$ (XCR)—cryogenic steel conditioning process, used primarily with hard, thick materials. Improves strength, toughness, and dimensional stability.

Code/Delivery		Material
XN -DayTride ${ }^{\text {® }}$	+ 3 days	M2 \& PS4
XNT -DayTiN ${ }^{\text {® }}$	+ 3 days	M2 \& PS4
XAN - DayTAN ${ }^{\text {™ }}$	+ 4 days	M2 \& PS4
XND - DayKote ${ }^{\text {TM }}$	+ 8 days	M2 \& PS4
XCN -TiCN	+ 3 days	M2 \& PS4
XNM - MoST ${ }^{\text {TM }}$	+ 7 days	M2 \& PS4
XNP	+ 8 days	M2 \& PS4
XCR - DayKool ${ }^{\text {™ }}$	+ 1 day	M2 \& PS4

*Vickers used when RC exceeds 80
${ }^{\circledR}$ DayTride and DayTiN are registered trademarks of Dayton Progress.
${ }^{\text {TM DayTAN, DayKote, and DayKool are trademarks of Dayton Progress. }}$ MoST is a trademark of lonBond ${ }^{(3)}$ Inc.

Standard Alterations

Jektole ${ }^{\oplus}$ Punches-Light Duty

XP, XW P and W Dimensions Smaller than Standard

XB Point Length
 Other than Standard

For XBB, add three days to delivery.

	XB								XBB
Point Length	$\begin{aligned} & .5001-.6251- \\ & .6250 .7500 \end{aligned}$	$\begin{aligned} & .7501- \\ & .8750 \end{aligned}$	$\begin{aligned} & .8751- \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 1.0001- \\ & 1.1250 \end{aligned}$	$\begin{aligned} & 1.1251- \\ & 1.2500 \end{aligned}$	$\begin{aligned} & 1.2501- \\ & 1.3750 \end{aligned}$		$\begin{aligned} & 1.5001- \\ & 1.6250 \end{aligned}$	$\begin{aligned} & 1.6261- \\ & 2.0001 \end{aligned}$
Code Type	Min. P (Rounds)								
25 LJX	. 050.050	. 080	. 080						
37 LJX	. 115 . 115	. 115	. 115	. 115	. 115	. 115	. 115	. 115	
50 LJX	. 158	. 158	. 158	. 158	. 158	. 158	. 158	. 158	. 187
62 LJX	. 158	. 158	. 158	. 158	. 158	. 158	. 158	. 158	. 188
75 LJX	. 235	. 235	. 235	. 235	. 235	. 235	. 235	. 235	. 281
87 LJX	. 300	. 300	. 300	. 300	. 300	. 300	. 300	. 300	. 312
100 LJX	. 350	. 350	. 350	. 350	. 350	. 350	. 350	. 350	. 350
	Min. W (Shapes)								
25 LJ_	. 050	. 050	. 080	. 080					
37 LJ_	. 115	. 115	. 115	. 115	. 115	. 115	. 115	. 115	
50 LJ_			. 158	. 158	. 158	. 158	. 158	. 158	. 187
62 LJ_			. 158	. 158	. 158	. 158	. 158	. 158	. 188
75 LJ_			. 235	. 235	. 235	. 235	. 235	. 235	. 250
87 LJ_		. 235	. 235	. 235	. 235	. 235	. 235	. 235	. 250
100 LJ		. 235	. 235	. 235	. 235	. 235	. 235	. 235	. 250

XL Overall Length Shortened
Stock removal from point end which shortens B length.

LL Precision Overall Length

Same as XL except overall length is held to $\pm .001$.
WS Whistle Stop See table for standard angles. The Whistle Stop alteration is ground through the ball seat, subject to the same limitations as other standard and custom ball seat locations.

Example: LJX50 400, P.327, M2, WS, XA 7.5°

\mathbf{D}	\mathbf{A}°
25,37	5°
50	7.5°
$62-100$	10°

Angles of 5° and 7.5° also available on .625 and larger diameters. (Specify XA and angle after WS.)

XJ Smaller Jektole ${ }^{\circledR}$ Components
 See p. 37.

XK No Side Hole
For air ejection. No cost.

SBR Straight Before Radius

To determine Length of Radius Blend (LRB)

1. Calculate (D-P)/2
2. Find (D-P)/2 value on left side of chart.
3. Follow line over to intersection point on radius blend line.
4. Read LRB value on bottom of chart.

(D-P)/2=(.375-.175)/2=. 100
Following the .100 line on chart over the radius blend line shows the LRB to be approximately .300

Regular Punches
 Light Duty

Material

Steel: A2, M2, PS4, RC 60-63

Round $\mathrm{P}=-.0000 \quad \bigcirc 0.0005$ P to D
Shape P, W $\pm .0005 \quad 0 \quad 0 \mid .001$ P to D

Regular Punches
 Light Duty

Standard Ball Seat Locations
Standard Ball Seat Location is at 90°. Alternate locations of $0^{\circ}, 180^{\circ}$, or 270° can be specified at no additional cost.
Custom Ball Seat Locations
Custom Ball Seat Locations can be specified as "BS" and degrees counterclockwise from 0°. For additional
 information, see "Locking Devices" on p .38.

Double Ball Seat

A second ball seat may be specified. Normally located 180° from the primary ball seat, these are used to minimize sharpening of notching punches by rotating the punch 180°. Specify "SB" and degree desired. A second ball can also be located 90° from the primary ball seat.

Not recommended for diameters under. 375 .

Standard Alterations

Regular punches are available in sizes other than those shown in the chart to the left.

When ordering, you are asked to specify different designations for various non-standard dimensions. For example, if the P and W dimensions are outside the standard range, an " X " is placed in front of the P or W dimension, e.g., "XP" and/or "XW." If the point length is other than standard, designate "XB" as the point length. Also see "Standard Alterations" on the front of the pullout tab in this section for other special order designators.

Surface Coatings

Some catalog products can be coated to increase hardness, reduce galling, and improve wear and/or corrosion resistance. The available coatings are listed below. Also, see the chart at the bottom of this page for delivery times.
DayTride ${ }^{\circledR}$ (XN)—a low-cost surface application that treats all exposed surfaces. Ideal for punches and matrixes. Provides high dimensional stability. Approx. hardness: RC73.
DayTiN ${ }^{\circledR}$ (XNT)—applied via PVD (physical vapor deposition). Provides extreme hardness (hard as carbide) and excellent lubricity when used with a lubricant. Not recommended for stainless steel, copper, or nickel. Approx. hardness: *Vickers 2300.

DayTAN ${ }^{\text {M }}$ (XAN)—ultra-hard, high-aluminum PVD coating. Absorbs shear stress and provides high temperature resistance. Ideal for HSLA, dual phase, and TRIP steels. Approx. hardness: *Vickers 3400.

DayKote $^{\text {TM }}$ (XND)—used for extrusion/forming applications. Should not be used with a lubricant. Not recommended for stainless steel, copper, or nickel. Tolerance is $\pm .0002$ ". Approx. hardness: *Vickers 2300.

TiCN (XCN)—very hard PVD, thin film. Provides ultra hardness (harder than carbide) and superior abrasive wear resistance. Approx. hardness: *Vickers 3000.
MoST ${ }^{\text {TM }}$ (XNM)—PVD, solid film. Produces lower coefficient of friction than other coatings. Provides excellent lubricity. Approx. hardness: *Vickers 2000.

XNP—the ultimate coating for extrusion and forming applications. Also works well in shaving operations. Tolerance is $\pm .0002$ ". Approx. hardness: *Vickers 3100.

DayKool ${ }^{\text {TM }}$ (XCR)—cryogenic steel conditioning process, used primarily with hard, thick materials. Improves strength, toughness, and dimensional stability.

Code / Delivery		Material
XN -DayTride ${ }^{\text {® }}$	+ 3 days	M2 \& PS4
XNT -DayTiN ${ }^{\text {® }}$	+ 3 days	M2 \& PS4
XAN - DayTAN ${ }^{\text {™ }}$	+ 4 days	M2 \& PS4
XND - DayKote ${ }^{\text {TM }}$	+ 8 days	M2 \& PS4
XCN -TiCN	+ 3 days	M2 \& PS4
XNM - MoST ${ }^{\text {TM }}$	+ 7 days	M2 \& PS4
XNP	+ 8 days	M2 \& PS4
XCR -DayKool ${ }^{\text {TM }}$	+ 1 day	M2 \& PS4

*Vickers used when RC exceeds 80.
${ }^{\circledR}$ DayTride and DayTiN are registered trademarks of Dayton Progress.
${ }^{\text {TM }}$ DayTAN, DayKote, and DayKool are trademarks of Dayton Progress. MoST is a trademark of IonBond ${ }^{(3)}$ Inc.

Standard Alterations

Regular Punches-Light Duty

$\mathbf{X P}, \mathrm{XW} \underset{\text { P and W Dimensions }}{\text { P }}$ Smaller than Standard

XB Point Length

Other than Standard
For XBB and X3B, add three days to delivery.

	XB							XBB	X3B	
Point Length	.5001-. 6251-.7501-.8751-1.0001-1.1251-1.2501-1.3751-1.5001. 6250.7500 .87501 .00001 .12501 .25001 .37501 .50001 .6250							$\begin{aligned} & 1.6261- \\ & 2.0001 \end{aligned}$	$\begin{aligned} & 2.0001-2.5001-2.50003 .0000 \\ & 2.500 \end{aligned}$	
Code Type	Min. P (Rounds)									
25 LPX	. 040.040 .080	. 080	. 106	. 115						
37 LPX	. 050.050 . 080	. 080	. 106	. 115	. 115	. 115	. 115	. 187	. 250	. 312
50 LPX	. 093.093	. 093	. 125	. 125	. 125	. 125	. 125	. 187	. 250	. 312
62 LPX	. 125.125	. 125	. 156	. 156	. 156	. 156	. 156	187	. 250	. 312
75 LPX	. 235.235	. 235	. 235	. 235	. 235	. 235	. 235	. 281	. 312	. 375
87 LPX	. 300.300	. 300	. 300	. 300	. 300	. 300	. 300	. 350	. 375	. 437
100 LPX	. 350.350	. 350	. 350	. 350	. 350	. 350	. 350	. 350	. 375	. 437
	Min. W (Shapes)									
25 LP_	. 040.040	. 080	. 080	. 106	. 115					
37 LP -	. 050.050	. 080	. 080	. 106	. 115	. 115	. 115	. 156		
50 LP -	. 093	. 093	. 093	. 125	. 125	. 125	. 125	. 187		
62 LP -	. 125	. 125	. 125	. 156	. 156	. 156	. 156	. 187		
75 LP-	. 235	. 235	. 235	. 235	. 235	. 235	. 235	. 250		
87 LP-		. 235	. 235	. 235	. 235	. 235	. 235	. 250		
100 LP_		. 235	. 235	. 235	. 235	. 235	. 235	. 250		

XL Overall Length Shortened
Stock removal from point end which shortens B length.

LL Precision Overall Length
Same as XL except overall length is held to $\pm .001$.
WS Whistle Stop See table for standard angles. The Whistle Stop alteration is ground through the ball seat, subject to the same limitations as other standard and custom ball seat locations.

Example: LPX37 400, P.327, M2, WS, XA $5{ }^{\circ}$

\mathbf{D}	\mathbf{A}°
25,37	5°
50	7.5°
$62-100$	10°

Angles of 5° and 7.5° also available on . 625 and larger diameters.
(Specify XA and angle after WS.)

SBR Straight Before Radius

To determine Length of Radius Blend (LRB)

1. Calculate $(D-P) / 2$.
2. Find (D-P)/2 value on left side of chart.
3. Follow line over to
intersection point
on radius blend line
4. Read LRB value
on bottom of chart.

Example:

$\mathrm{D}=.375$
$\mathrm{P}=.175$
(D-P)/2=(.375-.175)/2=. 100
Following the .100 line on chart over the radius blend line shows the LRB to be approximately .300 .

Regular Pllots
 Light Duty

Material
Steel: A2, M2, PS4, RC 60-63
Round $\mathrm{P}_{-.0000}^{+.0005} \quad \bigcirc .0005 \mid \mathrm{P}$ to D

*Slightly less for diameters under . 238.

Features/Benefits

Regular pilots are built to exact tolerances; the parabolic point shape allows for smooth pick-up action; and pilots offer a wide range of unique punching and fabrication applications.

HOW TO ORDER

Specify:	Oty.	Type	D Code	L	P	Steel
Example:	25	LPT	37	300	P. 175	A2

Standard Alterations

Regular pilots are available in sizes other than those shown in the chart to the left.
When ordering, you are asked to specify different designations for various non-standard dimensions. For example, if the P dimension is outside the standard range, an " X " is placed in front of the P dimension, e.g., "XP." If the point length is other than standard, designate "XB" as the point length. Also see "Standard Alterations" on the front of the pullout tab in this section for other special order designators.

Surface Coatings

Some catalog products can be coated to increase hardness, reduce galling, and improve wear and/or corrosion resistance. The available coatings are listed below. Also, see the chart at the bottom of this page for delivery times.

DayTride ${ }^{\circledR}$ (XN)—a low-cost surface application that treats all exposed surfaces. Ideal for punches and matrixes. Provides high dimensional stability. Approx. hardness: RC73.
DayTiN ${ }^{\circledR}$ (XNT)—applied via PVD (physical vapor deposition). Provides extreme hardness (hard as carbide) and excellent lubricity when used with a lubricant. Not recommended for stainless steel, copper, or nickel. Approx. hardness: *Vickers 2300.

DayTAN ${ }^{\text {TM }}$ (XAN)—ultra-hard, high-aluminum PVD coating. Absorbs shear stress and provides high temperature resistance. Ideal for HSLA, dual phase, and TRIP steels. Approx. hardness: *Vickers 3400.

DayKote ${ }^{\text {TM }}$ (XND)—used for extrusion/forming applications. Should not be used with a lubricant. Not recommended for stainless steel, copper, or nickel. Tolerance is $\pm .0002^{\prime \prime}$. Approx. hardness: *Vickers 2300.

TiCN (XCN)—very hard PVD, thin film. Provides ultra hardness (harder than carbide) and superior abrasive wear resistance. Approx. hardness: *Vickers 3000.

MoST $^{\text {TM }}$ (XNM)—PVD, solid film. Produces lower coefficient of friction than other coatings. Provides excellent lubricity. Approx. hardness: *Vickers 2000.

XNP—the ultimate coating for extrusion and forming applications. Also works well in shaving operations. Tolerance is $\pm .0002$ ". Approx. hardness: *Vickers 3100.

DayKool ${ }^{\text {TM }}$ (XCR)—cryogenic steel conditioning process, used primarily with hard, thick materials. Improves strength, toughness, and dimensional stability.

Code / Delivery		Material
XN -DayTride ${ }^{\text {® }}$	+ 3 days	M2 \& PS4
XNT -DayTiN ${ }^{\text {® }}$	+ 3 days	M2 \& PS4
XAN - DayTAN ${ }^{\text {™ }}$	+ 4 days	M2 \& PS4
XND - DayKote ${ }^{\text {TM }}$	+ 8 days	M2 \& PS4
XCN - TiCN	+ 3 days	M2 \& PS4
XNM - MoST ${ }^{\text {™ }}$	+ 7 days	M2 \& PS4
XNP	+ 8 days	M2 \& PS4
XCR - DayKool ${ }^{\text {TM }}$	+ 1 day	M2 \& PS4

*Vickers used when RC exceeds 80
${ }^{\circledR}$ DayTride and DayTiN are registered trademarks of Dayton Progress.
${ }^{\text {TM DayTAN, DayKote, and DayKool are trademarks of Dayton Progress. }}$ MoST is a trademark of lonBond ${ }^{(3)}$ Inc.

Standard Alterations

Regular Pilots-Light Duty

XP P Dimensions
 Smaller than Standard
 XB Point Length
 Other than Standard

For XBB and X3B, add three days to delivery.

	XB						$\left\|\begin{array}{\|c\|} \text { XBB } \\ 1.6261- \\ 2.0001 \end{array}\right\|$	X3B	
Point Length	.5001-.6251-. $7501-.8751-1.0001-1.1251-1.2501-1.3751-1.5001-$.6250 .7500 .87501 .00001 .12501 .25001 .37501 .50001 .6250								$\begin{aligned} & 1-2.5001- \\ & 03.0000 \end{aligned}$
Code Type	Min. P (Rounds)								
25 LPT	. 050.050 .079 .079	. 105	. 114						
37 LPT	. 061.061 .079 .079	. 105	. 114	. 114	. 114	. 114	. 186	. 249	. 311
50 LPT	. 092.092 .092	. 124	. 124	. 124	. 124	. 124	. 186	. 249	. 311
62 LPT	. 124.124 .124	. 155	. 155	. 155	. 155	. 155	. 186	. 249	. 311
75 LPT	. 234.234 .234	. 234	. 234	. 234	. 234	. 234	. 280	. 311	. 374
87 LPT	. 299.299 .299	. 299	. 299	. 299	. 299	. 299	. 349	. 374	. 436
100 LPT	. 349.349 .349	. 349	. 349	. 349	. 349	. 349	. 349	. 374	. 436

XL Overall Length Shortened

Stock removal from point end which shortens B length.

WS Whistle Stop See table for standard angles. The Whistle Stop alteration is ground through the ball seat, subject to the same limitations as other standard and custom ball seat locations.

Example: LPT62 400, P.327, M2, WS, XA 10°

\mathbf{D}	\mathbf{A}°
25,37	5°
50	7.5°
$62-100$	10°

Angles of 5° and 7.5° also available on . 625 and larger diameters. (Specify XA and angle after WS.)

SBR Straight Before Radius

To determine Length of Radius Blend (LRB)

1. Calculate (D-P)/2.
2. Find (D-P)/2 value on left side of chart.
3. Follow line over to intersection point on radius blend line.
4. Read LRB value on bottom of chart.

Example:

 $\mathrm{D}=.375$ $\mathrm{P}=.175$
(D-P)/2=(.375-.175)/2=. 100
Following the .100 line on chart over the radius blend line shows the LRB to be approximately .300 .

Positive Pick-Up Pilots
 Light Duty

Material

Steel: M2, PS4, RC 60-63
Round $P{ }_{-.0000}^{+.0005} \quad\left(\begin{array}{l}\text { O } \\ \sim\end{array}\right.$
When $P=D$, shank tolerance applies.

Order any length shown. If you require a length between those shown, designate "XL." Example: You require a length of 3.600. Order 375, then show XL 3.600. See "How to Order" example on the next page. XL is available down to 1.375 . Note shank length limitation of .75 . (B length may be shorter than shown when XL is under the shortest length shown.)
There is no additional charge for XL.

* $\mathrm{N}=[(\mathrm{P}-.057) / .728]+.132$ when " P " dimension is less than "Pn" shown in chart.

Positive Pick-Up Pilots Light Duty

Greater positioningmoves stock farther than conventional pilots.

Features/Benefits

Positive pick-up pilots provide smoother pick-up without the risk of distorting the hole; in addition, the unique design moves the stock farther than conventional pilots.

HOW TO ORDER

Specify:	Qty.	Type	D Code	L	P	Steel
Example:	5	LPA	50	300	P. 375	M2

Standard Alterations

Ball Lock positive pick-up pilots are available in sizes other than those shown in the chart to the left.

When ordering, you are asked to specify different designations for various non-standard dimensions. For example, if the P dimension is outside the standard range, an " X " is placed in front of the P dimension, e.g., "XP." If the point length is other than standard, designate "XB" as the point length. Also see "Standard Alterations" on the front of the pullout tab in this section for other special order designators.

Surface Coatings

Some catalog products can be coated to increase hardness, reduce galling, and improve wear and/or corrosion resistance. The available coatings are listed below. Also, see the chart at the bottom of this page for delivery times.

DayTride ${ }^{\circledR}$ (XN)—a low-cost surface application that treats all exposed surfaces. Ideal for punches and matrixes. Provides high dimensional stability. Approx. hardness: RC73.
DayTiN ${ }^{\circledR}$ (XNT)—applied via PVD (physical vapor deposition). Provides extreme hardness (hard as carbide) and excellent lubricity when used with a lubricant. Not recommended for stainless steel, copper, or nickel. Approx. hardness: *Vickers 2300.

DayTAN ${ }^{\text {TM }}$ (XAN)—ultra-hard, high-aluminum PVD coating. Absorbs shear stress and provides high temperature resistance. Ideal for HSLA, dual phase, and TRIP steels. Approx. hardness: *Vickers 3400.

DayKote ${ }^{\text {TM }}$ (XND)—used for extrusion/forming applications. Should not be used with a lubricant. Not recommended for stainless steel, copper, or nickel. Tolerance is $\pm .0002$ ". Approx. hardness: *Vickers 2300.

TiCN (XCN)—very hard PVD, thin film. Provides ultra hardness (harder than carbide) and superior abrasive wear resistance. Approx. hardness: *Vickers 3000.

MoST ${ }^{\text {TM }}$ (XNM)—PVD, solid film. Produces lower coefficient of friction than other coatings. Provides excellent lubricity. Approx. hardness: *Vickers 2000.

XNP—the ultimate coating for extrusion and forming applications. Also works well in shaving operations. Tolerance is $\pm .0002$ ". Approx. hardness: *Vickers 3100.

DayKool ${ }^{\text {TM }}$ (XCR)—cryogenic steel conditioning process, used primarily with hard, thick materials. Improves strength, toughness, and dimensional stability.

Code/Delivery		Material
XN -DayTride ${ }^{\text {® }}$	+ 3 days	M2 \& PS4
XNT -DayTiN ${ }^{\text {® }}$	+ 3 days	M2 \& PS4
XAN - DayTAN ${ }^{\text {™ }}$	+ 4 days	M2 \& PS4
XND - DayKote ${ }^{\text {TM }}$	+ 8 days	M2 \& PS4
XCN -TiCN	+ 3 days	M2 \& PS4
XNM - MoST ${ }^{\text {TM }}$	+ 7 days	M2 \& PS4
XNP	+ 8 days	M2 \& PS4
XCR - DayKool ${ }^{\text {™ }}$	+ 1 day	M2 \& PS4

*Vickers used when RC exceeds 80.
${ }^{\circledR}$ DayTride and DayTiN are registered trademarks of Dayton Progress.
${ }^{\text {tM }}$ DayTAN, DayKote, and DayKool are trademarks of Dayton Progress. MoST is a trademark of IonBond ${ }^{(3)}$ Inc.

Standard Alterations

Positive Pick-Up Pilots—Light Duty

XP P Dimensions
Smaller than Standard

XB Point Length

Other than Standard
Specify XB, XBB, or X3B and length (see chart below).
For XBB and X3B, add three days to delivery.

XL Overall Length Shortened
Stock removal from point end. B length is maintained.
Available at no charge within catalog range.

WS Whistle Stop See table for standard angles. The Whistle Stop alteration is ground through the ball seat, subject to the same limitations as other standard and custom ball seat locations.

Example: LPA50 400, P.327, M2, WS, XA 7.5 ${ }^{\circ}$

\mathbf{D}	\mathbf{A}°
25,37	5°
50	7.5°
$62-100$	10°

Angles of 5° and 7.5° also available

on . 625 and larger diameters. (Specify XA and angle after WS.)

SBR Straight Before Radius

To determine Length of Radius Blend (LRB)

1. Calculate (D-P)/2.
2. Find (D-P)/2 value on left side of chart.
3. Follow line over to intersection point on radius blend line.
4. Read LRB value on bottom of chart.

Example:

$\mathrm{D}=.375$
$\mathrm{P}=.175$

$(D-P) / 2=(.375-.175) / 2=.100$
Following the .100 line on chart over the radius blend line shows the LRB to be approximately .300 .

Punch Blanks Jektole \& Regular

Light Duty

Type	Shank		L																	Jektole ${ }^{\text {e }}$ Group
	D	Code	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00	5.25	5.50	5.75	6.00	
LJB	. 250	25	200	225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	J3
	. 375	37																		J4
	. 500	50																		J6
	. 625	62																		J9
	. 750	75																		J9
	. 875	87																		J9
	1.000	100																		J9

Type	Shank		L																				
	D	Code	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00	5.25	5.50	5.75	6.00	6.25	6.50	6.75	7.00
LPB	. 250	25	200	225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700
	. 375	37																					
	. 625	62																					
	. 750	75																					
	.875 1.000	87 100																					

*See p. 37 for additional information.

HOW TO ORDER

Specify:	Qty.	Type	D Code	L	Steel
Example: 12	LJB	50	300	M2	

Point Larger than Shank Jektole \& Regular
 Light Duty

Material

Steel: A2, M2, RC 60-63
Round $\mathrm{P}_{-. .0000}^{+.005} \quad 0.0005 \mathrm{P}$ to D
Shape P, W $\pm .0005 \quad 0$ O .001 P to D

(1) Check your P\&W dimensions to be certain the diagonal G does not exceed the maximum shown.

L_H
L_J
L_Y
L_Z

Type	Shank		$\begin{array}{\|c\|} \hline \text { Point } \\ \text { Lgth. } \\ B \end{array}$	Round Range P	Shape	L									$\begin{gathered} * \\ \text { Jektole } \\ \text { Group } \end{gathered}$
	D	Code			$\begin{aligned} & \text { Min. Max. } \\ & \text { W } \\ & \hline \text { P/G } \\ & \hline \end{aligned}$	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	
	. 375	37	. 62	. 376 - . 875	. $125-.875$										J4
L2- Regur	. 500	50	. 75	.501-1.250	.188-1.250										J6
	. 625	62	. 88	.626-1.500	.250-1.500	250	275	300	325	350	375	400	425	,	J6
	. 750	75	. 94	.751-1.500	.312-1.500										J9
	. 875	87	. 94	.876-1.750	. $375-1.750$										J9
	1.000	100	. 94	1.001-1.750	.437-1.750										J9

*See p. 37 for additional information.

Standard Ball Seat Locations

Standard Ball Seat Location is at 90°. Alternate locations of $0^{\circ}, 180^{\circ}$, or 270° can be specified at no additional cost.

Custom Ball Seat Locations

Custom Ball Seat Locations can be specified as "BS" and degrees counterclockwise from 0°. For additional information, see "Locking Devices" on p. 38.

Double Ball Seat

A second ball seat may be specified. Normally located 180° from the primary ball seat, these are used to minimize sharpening of notching punches by rotating the punch 180°. Specify "SB" and degree desired. A second ball can also be located 90° from the primary ball seat.

Not recommended for diameters

 under . 625 for LZ__ and . 500 for LK__.

HOW TO ORDER

Specify:	Qty.	Type	D Code	L	P(or P\&W)	Steel
Example:	2	LKX	100	400	P1.300	M2

Standard Alterations

Point Larger than Shank Ball Lock punches are available in sizes other than those shown in the chart above.

When ordering, you are asked to specify different designations for various non-standard dimensions. For example, if the P and W dimensions are outside the standard range, an " X " is placed in front of the P or W dimension, e.g., "XP" and/or "XW." If the point length is other than standard, designate "XB" as the point length. Also see "Standard Alterations" on the front of the pullout tab in this section for other special order designators.

Surface Coatings

Some catalog products can be coated to increase hardness, reduce galling, and improve wear and/or corrosion resistance. The available coatings are listed below. Also, see the chart at the bottom of this page for delivery times.

DayTride ${ }^{\circledR}$ (XN)—a low-cost surface application that treats all exposed surfaces. Ideal for punches and matrixes. Provides high dimensional stability. Approx. hardness: RC73.
DayTiN ${ }^{\circledR}$ (XNT)—applied via PVD (physical vapor deposition). Provides extreme hardness (hard as carbide) and excellent lubricity when used with a lubricant. Not recommended for stainless steel, copper, or nickel. Approx. hardness: *Vickers 2300

DayTAN ${ }^{\text {TM }}$ (XAN)—ultra-hard, high-aluminum PVD coating. Absorbs shear stress and provides high temperature resistance. Ideal for HSLA, dual phase, and TRIP steels. Approx. hardness: *Vickers 3400.

DayKote ${ }^{\text {TM }}$ (XND)—used for extrusion/forming applications. Should not be used with a lubricant. Not recommended for stainless steel, copper, or nickel. Tolerance is $\pm .0002$ ". Approx. hardness: *Vickers 2300.

TiCN (XCN)—very hard PVD, thin film. Provides ultra hardness (harder than carbide) and superior abrasive wear resistance. Approx. hardness: *Vickers 3000.

MoST $^{\text {TM }}$ (XNM)—PVD, solid film. Produces lower coefficient of friction than other coatings. Provides excellent lubricity. Approx. hardness: *Vickers 2000.

XNP—the ultimate coating for extrusion and forming applications. Also works well in shaving operations. Tolerance is $\pm .0002$ ". Approx. hardness: *Vickers 3100.

DayKool ${ }^{\text {TM }}$ (XCR)—cryogenic steel conditioning process, used primarily with hard, thick materials. Improves strength, toughness, and dimensional stability.

Code / Delivery		Material
XN -DayTride ${ }^{\text {® }}$	+ 3 days	M2 \& PS4
XNT -DayTiN ${ }^{\text {® }}$	+ 3 days	M2 \& PS4
XAN - DayTAN ${ }^{\text {™ }}$	+ 4 days	M2 \& PS4
XND - DayKote ${ }^{\text {TM }}$	+ 8 days	M2 \& PS4
XCN - TiCN	+ 3 days	M2 \& PS4
XNM -MoST ${ }^{\text {™ }}$	+ 7 days	M2 \& PS4
XNP	+ 8 days	M2 \& PS4
XCR - DayKool $^{\text {™ }}$	+ 1 day	M2 \& PS4

*Vickers used when RC exceeds 80
${ }^{\circledR}$ DayTride and DayTiN are registered trademarks of Dayton Progress.
${ }^{\text {TM DayTAN, DayKote, and DayKool are trademarks of Dayton Progress. }}$ MoST is a trademark of lonBond ${ }^{(3)}$ Inc.

Standard Alterations

Point Larger than Shank-Light Duty

XB ${ }^{\text {Point Length }}$
 Other than

 Standard(Shortens punch from the point end.)

XL Overall Length Shortened

Stock removal from shank end. Minimum shank length is $13 / 16^{\prime \prime}$. Does not alter ball seat location.

WS Whistle Stop See table for standard angles. The Whistle Stop alteration is ground through the ball seat, subject to the same limitations as other standard and custom ball seat locations.

Example: LZX75 400, P1.250, M2, WS, XA 10° LKR75 400, P1.250, W.350, M2, WS, XA 10°

\mathbf{D}	\mathbf{A}°
37	5°
50	7.5°
$62-100$	10°

Angles of 5° and 7.5° also available on .625 and larger diameters.
(Specify XA and angle after WS.)

Matrixes

Ball Lock

Material

Steel: A2, M2, RC 60-63
Round $\mathrm{P}_{-.0000}^{+0.005} \quad \bigcirc 1.0005 \mathrm{P}$ to D
Shape P, W ${ }_{-. .000}^{+.001} \bigcirc \bigcirc{ }^{\circ}$ O $.001 \mid$ P to D

Body				Round	Shape	\mathbf{L}
\mathbf{D}	Code	Min. \mathbf{B}	Max. \mathbf{R}	Range \mathbf{P}	Min. Max. \mathbf{W} P/G P/G	$\mathbf{1 . 1 8 7}$
.5000	50	.156	.228	$.064-.195$	$.048-.195$	118
.6250	62	.187	.312	$.126-.285$	$.064-.285$	118
.7500	75	.187	.375	$.196-.345$	$.095-.345$	118
.8750	87	.187	.468	$.286-.435$	$.125-.435$	118
1.0000	100	.250	.578	$.346-.545$	$.125-.545$	118
1.2500	125	.250	.687	$.436-.655$	$.187-.655$	118
1.5000	150	.250	.812	$.546-.780$	$.187-.780$	118
1.7500	175	.312	1.062	$.656-1.035$	$.187-1.035$	118

HOW TO ORDER

Specify:	Qty.	Type	D Code	L	P(or P\&W)	Steel
Example:	10	LDX	125	118	P. 625	A2

Note: The standard ball seat location is at 90°. Alternate locations of $0^{\circ}, 180^{\circ}$, or 270° can be specified at no additional cost. For additional information, see "Locking Devices" on p. 38.

Material

Steel: A2, M2, RC 60-63
Round $\mathrm{P}_{-.0000}^{+.0005} \quad \bigcirc 0|0005| \mathrm{P}$ to D
Shape P, W ${ }_{-.000}^{+.001}$
(O) 0.001 P to D

D $\overline{>} 1.75{ }_{+.0006}^{+0.002}$

HOW TO ORDER

Specify:	Qty.	Type	D Code	L	P(or P\&W)	Steel
Example:	5	KDR	50	100	P. 250, W. 093	A2

Body				Round	Shape	L								
D	Code	Min. B	Max. R	$\begin{gathered} \text { Range } \\ \mathbf{P} \end{gathered}$	$\begin{gathered} \text { Min. Max. } \\ \mathrm{W} \end{gathered}$. 750	. 875	. 937	1.000	1.125	1.187	1.250	1.375	1.500
. 2500	25	. 156	. 156	. $064-.135$. $048-.135$									
. 3750	37	. 156	. 228	. $064-.195$. 048 - . 195									
. 5000	50	. 156	. 312	. 064 - . 285	. 064 - . 285									
. 6250	62	. 187	. 390	. 136 - . 365	. $095-.365$									
. 7500	75	. 187	. 468	. 136 -. 435	.118-.435									
. 8750	87	. 187	. 578	. 276 - . 545	. $125-.545$									
1.0000	100	. 250	. 703	. 356 - . 675	. $125-.675$	75	87	93	100	112		125	137	150
1.2500	125	. 250	. 828	. 500 -. 800	. 187 -. 800				100					
1.5000	150	. 250	1.093	.616-1.050	.187-1.050									
1.7500	175	. 312	1.430	.750-1.400	.187-1.400									
2.0000	200	. 312	1.630	.875-1.600	.187-1.600									
2.2500	225	. 312	1.830	1.000-1.800	.187-1.800						118			
2.5000	250	. 312	2.030	1.125-2.000	.187-2.000									
2.7500	275	. 312	2.230	1.250-2.200	.187-2.200									

Up to 1.5000 Dia. 2 Days 1.7500 and larger Dia. 4 Days

Standard Alterations

Ball Lock press fit matrixes are available in sizes other than those shown in the chart above.

When ordering, you are asked to specify different designations for various non-standard dimensions. For example, if the P and W dimensions are outside the standard range, an " X " is placed in front of the P or W dimension, e.g., "XP" and/or "XW." If the point length is other than standard, designate "XB" as the point length. Also see "Standard Alterations" on the front of the pullout tab in this section for other special order designators.

Dayton Slug Control

Dayton Slug Control is a patented, guaranteed method for reducing the risk of pulling slugs to the die surface during withdrawal of the punch. A series of grooves is designed inside the matrix (see draw-
 ing). There, the slugs are trapped until they fall freely through the relief. The use of Dayton Slug Control has no effect on hole size, and will not require any changes in current regrind practices.

Our guarantee: Use Dayton Slug Control in a stamping die now pulling slugs. If, for any reason, you are not completely satisfied, we will refund the full cost of the Slug Control alteration. (We cannot guarantee the retention of slugs when clearance exceeds 10% per side.)

Ordering

Dayton Slug Control is easy to specify and order. Simply add the information that is unique to your application to the matrix catalog number. Please specify XSC for alteration and show material thickness (inches) and clearance per side (percentage).
HOW TO ORDER

For additional information, contact your

 Dayton distributor.
Standard Alterations

Matrixes

XP, XW P and W Dimensions Larger or Smaller than Standard

Body Code	Press Fit				Ball Lock			
	$\begin{gathered} \text { Min. } \\ \mathbf{P} \end{gathered}$	$\begin{gathered} \text { Min. } \\ \text { W } \end{gathered}$	$\begin{gathered} \text { Max. } \\ \mathrm{P} / \mathrm{G} \\ \hline \end{gathered}$	R	$\begin{gathered} \text { Min. } \\ \mathbf{P} \\ \hline \end{gathered}$	Min. W	$\begin{gathered} \text { Max. } \\ \text { P/G } \end{gathered}$	R
25	. 064	. 048	. 167	. 191				
37	. 064	. 048	. 250	. 281				
50	. 064	. 064	. 344	. 375	. 064	. 048	250	. 281
62	. 136	. 095	. 453	. 500	. 126	. 064	. 344	. 375
75	. 136	. 118	. 562	. 594	. 150	. 095	453	. 500
87	. 276	. 125	. 656	. 703	. 175	. 125	562	. 594
100	. 356	. 125	. 750	. 781	. 200	. 125	656	. 703
125	. 500	. 187	. 935	. 969	. 250	. 187	. 750	. 781
150	. 616	. 187	1.200	1.230	. 300	. 187	. 935	. 969
175	. 750	. 187	1.400	1.430	. 350	. 187	1.200	1.230
200	. 875	. 187	1.600	1.630				
225	1.000	. 187	1.800	1.830				
250	1.125	. 187	2.000	2.030				
275	1.250	. 187	2.200	2.230				

XL Overall Length Shortened
Stock removal does not alter
land length on KD_
Minimum overall length $=.25$
Not available on Ball Lock Matrixes.

LL Precision Overall Length

Same as XL except overall length
is held to $\pm .001$.
Not available on Ball Lock Matrixes.

WS Whistle Stop (5° standard angle) See table for standard angles. The Whistle Stop alteration is ground through the ball seat, subject to the same limitations as other standard and custom ball seat locations. The XP alteration is not available with the WS alteration.

Example: LDX75, 118, P.328, M2, WS.

See p. 36 for Matrix Blanks.

Multi-Position" Retainers

Heavy Duty/Light Duty

Type	W	L													
		2.50	2.75	3.00	3.25	3.50	3.75	4.00	5.00	6.00	7.00	8.00	9.00	10.00	12.00
HRP LRP	2.00	2025	2027	2030	2032	2035	2037	2040	2050	2060	2070	2080	2090	2010	2012
	2.75		2727	2730	2732	2735	2737	2740	2750	2760	2770	2780	2790	2710	2712
	3.00		3027	3030	3032	3035	3037	3040	3050	3060	3070	3080	3090	3010	3012
	4.00							4040	4050	4060	4070	4080	4090	4010	4012
	6.00									6060	6070	6080	6090	6010	6012
	8.00											8080	8090	8010	8012

Ball Hole Locations

Hole Reference Re Datum Point	
Dowel Holes	$\pm .0003$
Screw Holes	$\pm .0050$
Component Holes	$\pm .0003$

Specify radial location in degrees counterclockwise from 0°.

Punch Shape	Ball Hole Class	Radial Tolerance
Round	B	$\pm 5^{\circ}$
Shape	BB	$\pm 0^{\circ} 5^{\prime}$

The Ball Hole Class B is standard, unless otherwise specified.

Space Requirements

See the back of the pullout tab for additional information on Backing Plugs.
Multi-Position ${ }^{\text {TM }}$ Retainers require special order forms, which are available on request. Specify all dimensions from the datum: Use the drawing above for reference.

[^0]
True Position Retainers
 Heavy Duty/Light Duty

TRUE POSITION ${ }^{\text {® }}$

The industry standard interchangeable retainer

HOW TO ORDER

Specify:	Qty.	Type	D
Example:	23	HRT	37
	13	LRT	62

True Position ${ }^{\circledR}$ Retainer sets

 include:- 1 Ball
- 1 Spring
- 2 Screws
- 2 Dowels
- 1 Ball Release Set Screw

Catalog Number

Features/Benefits

The in-line dowel assures precise punch-to-matrix alignment, giving you higher quality parts, longer punch life, and reduced production downtime.

The True Position ${ }^{\circledR}$ Retainer eliminates hand fitting, cutting mounting time by nearly 50%. Simply pull the retainer from its box, and screw it into the die set. True Position ${ }^{\circledR}$ gives you true dimensional accuracy every time.
Only one dowel is required for round punches, which reduces machining time by up to 50%. Shaped punches use the secondary dowel for precise alignment.

The precision-ground ball hole assures perfect alignment of any punch shape, even if the retainer is replaced.
The True Position ${ }^{\circledR}$ Retainer allows complete interchangeability between Heavy Duty and Light Duty retainers in the event of an engineering change.
Use of the True Position ${ }^{\circledR}$ Retainer can cut retainer inventory requirements by 50%.

[^1]
Backing Plugs

The three Backing Plugs shown above are used with Multi-Position ${ }^{\text {TM }}$, True Position ${ }^{\circledR}$, and End and Square Retainers-both heavy duty and light duty. To determine which backing plug is used with a specific type of retainer, see "Accessories-Retainers" on p. 34.
The Type C Solid Backing Plug is standard with all Multi-Position ${ }^{\text {TM }}$ Retainers. The Type A Backing Plug with dowels for location can be specified; this eliminates the need for dowels in the retainer. Matrix Retainers require a detailed drawing.

True Position ${ }^{\oplus}$ Retainers

Don't waste time and money building a retainer for just one punch. Fitting isolated punches or pilots onto a die set is quick and easy with True Position ${ }^{\circledR}$ Retainers. These cost-effective time-savers can be mounted with screws from either top or bottom, eliminating the need to build and fit one-of-a-kind retainers.

True Position ${ }^{\circledR}$ Retainers are recognized as the standard in the industry for interchangeable retainers. All are quality built; ground top to bottom; and hardened to approximately RC42.

True Position ${ }^{\circledR}$ gives you true dimensional accuracy each and every time!

Standard Alterations

Multi-Position ${ }^{\text {mW }}$ Retainers

Standard Jackscrew Hole

Jackscrews make it easier to pull retainers off the dowels.

Special Size

Any amount of material can be removed from the sides of the retainer for a custom size. Edges are saw cut $\pm .03$.

Clearance Holes Clearance holes or tapped holes can be detailed, as shown in the order example.

Holes are drilled through the retainer unless otherwise specified.

Location $\pm .010$
Diameter $\begin{array}{r}+.015 \\ -.000\end{array}$

The following alterations require
detailed drawings:

Notches

Notches to clear other tooling can be added to any side of the retainer. Notches
 are saw cut $\pm .03$.

Angles

As with notches, angles can be added to clear other tooling in
 the die. Angles are saw cut $\pm .03$.

Single Punch Retainer with Backing Plate
 True Position ${ }^{\circ}$

HOW TO ORDER

Specify:	Qty.	Code	D
Example:	23	HRTB	37

HRTB True Position ${ }^{\circledR}$
 Retainer sets include:

- 1 Ball
- 1 Spring
- 2 Screws
- 2 Dowels
- 1 Ball Release Set Screw

Heavy Duty	Code	D	A	B	G	K	R	S	\mathbf{U}	\mathbf{X}	\mathbf{Y}	Screw Size
	37	.3750	1.75	1.72	.438	.750	.38	.47	1.060	.354	.295	$5 / 16-18$
	50	.5000	2.00	1.97	.562	.750	.50	.60	1.180	.472	.256	$3 / 8-16$
	62	.6250	2.12	2.09	.625	.750	.56	.66	1.250	.532	.236	$3 / 8-16$
HRTB	75	.7500	2.38	2.34	.688	.750	.69	.79	1.320	.650	.197	$3 / 8-16$
	87	.8750	2.50	2.47	.688	.750	.75	.85	1.400	.728	.197	$3 / 8-16$
	100	1.0000	2.75	2.72	.781	.938	.88	.97	1.600	.866	.276	$1 / 2-13$
	125	1.2500	2.75	2.72	.781	.938	.88	.97	1.600	.866	.276	$1 / 2-13$

Features/Benefits

HRTB True Position ${ }^{\circledR}$ Retainers come complete with an integrated,
hardened backing plate. With all the features of the original True Position ${ }^{\circledR}$ Retainer, the HRTB satisfies the needs of applications where more bearing surface is desired. True Position ${ }^{\circledR}$ gives you true dimensional accuracy each and every time!

[^2]
EZ Fft' Retainer Inserts

The shape shown above can be easily cut using wire EDM to assure a proper fit. The insert (utilizing both the straight and 8° angled sides) fits securely and is designed to clear the retainer by a small amount, making assembly and disassembly easier.
Each insert comes complete with wire cutting instructions that show recommended dimensions and tolerances for optimum performance.

Heavy Duty

Type	Punch Hole Dia. D	Code	A	B	K
	0.3750	37	1.0630	0.6250	0.3882
	0.5000	50	1.3190	0.7500	0.5250
HRI	0.6250	62	1.4570	0.9000	0.4698
	0.7500	75	1.6040	1.0600	0.4202
	0.8750	87	1.7320	1.1950	0.4182
	1.0000	100	1.8700	1.3200	0.4111
	1.2500	125	2.1260	1.5700	0.3951

Light Duty

Type	Punch Hole Dia. D	Code	A	B	K
LRI	0.2500	25	0.7750	0.4375	0.3125
	0.3750	37	0.9000	0.5625	0.3125
	0.5000	50	1.1200	0.7500	0.3125
	0.6250	62	1.2500	0.8750	0.3125
	0.7500	75	1.4700	1.0700	0.3125
	0.8750	87	1.6000	1.1950	0.3125
	1.0000	100	1.7200	1.3200	0.3125

Features/Benefits

Dayton EZ Fit ${ }^{\text {TM }}$ Ball Lock Retainer Inserts give you the ability to build, reconfigure, and custom-make retainers in-house as die specifications change. In addition, the unique single-piece teardrop shape, combined with both a straight and an angled wedge side, holds your ball lock punch securely in place.

EZ Fit ${ }^{\text {TM }}$ reduces costs and downtime-and simplifies tooling changeover.

[^3]

The in-line dowel assures precise punch-to-matrix alignment, giving you higher quality parts, longer punch life, and reduced production downtime.
The True Position ${ }^{\oplus}$ Retainer eliminates hand fitting, cutting mounting time by nearly 50%. Simply pull the retainer from its box, and screw it into the die set.
Only one dowel is required for round punches, which reduces machining time by up to 50%. Shaped punches use the secondary dowel for precise alignment.
The precision-ground ball hole assures perfect alignment of any punch shape, even if the retainer is replaced.
The True Position ${ }^{\circledR}$ Retainer allows complete interchangeability between Heavy Duty and Light Duty retainers in the event of an engineering change.
Use of the True Position ${ }^{\circledR}$ Retainer can cut retainer inventory requirements by $\mathbf{5 0 \%}$.

Backing Plates

The Backing Plates are standard with Dayton's HRTB True Position ${ }^{\circledR}$ Single Punch Retainers. The Backing Plate has the same function as the backing plug model True Position ${ }^{\circledR}$ Retainer, i.e., to prevent the punch shank from penetrating the punch plate.
For optimum resistance on impact HRTB Retainers have integrated, hardened Backing Plates. The Backing Plates cover the entire surface of the retainer, spreading the load over a large area.

E-Z Fit' Retainer Inserts

Tighter Tolerances

Dayton EZ Fit ${ }^{\text {TM }}$ Retainer Inserts utilize a patented, state-of-the-art design that assures tighter, more precise tolerances than other retainer inserts on the market. The unique teardrop shape provides a single, tightly secured receptacle for the punch. One side of the piece (the flat side) is cut at an 8° angle to create a wedge shape. The hole in the retainer is wire cut to create a snug fit. (See cutaway.)
EZ Fit™ Retainer Inserts are also ideal for repairing or making engineering changes.

Repair/Engineering Changes

When job specifications change, the location(s) of the punches in the die set change, and reconfigured retainers are required. This means ordering new retainers or modifyying existing retainers in-house. This can slow the process; often requires specialized equipment and knowledge; and the integrity of the original retainer can be compromised.
Now-with the help of the all-new Dayton EZ Fit ${ }^{\text {TM }}$ Ball Lock Retainer Insert-this process can be simplified and completed in-house at a fraction of the cost of replacing existing retainers.

In-house Modifications

To retrofit the EZ Fit ${ }^{\text {TM }}$ Insert, simply wire cut the hole to the specified size and install. (See instructions at www.daytonprogress.com/ezfit for EDM wire cutting.) The process is quick, easy, effective, and far less expensive than part replacement costs.

End Retainers
 Heavy Duty/Light Duty

Retainer sets include:

- Backing Plug
- Ball
- Spring
- Screws
- Dowels

Catalog Number						
Type	\mathbf{D}	\mathbf{L}	\mathbf{J}	\mathbf{R}	\mathbf{Y}	Screw Size
	.5000	1.75	.375	.50	40°	$3 / 8-16$
	.6250	1.81	.438	.56	45°	$3 / 8-16$
HRE	.7500	1.88	.500	.69	60°	$3 / 8-16$
	.8750	1.94	.562	.75	60°	$3 / 8-16$
	1.0000	2.00	.625	.81	60°	$3 / 8-16$
	1.2500	2.12	.750	1.00	-	$3 / 8-16$

Catalog Number										
Type	D	\mathbf{G}	\mathbf{H}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{R}	\mathbf{W}	Screw Size	
See Drawing										
	.2500									
	.3750	.375	.281	.906	.969	2.25	.38	1.25	$3 / 8-16$	
	.5000	.375	.281	.906	.969	2.25	.50	1.25	$3 / 8-16$	
	.6250	.375	.281	.906	.969	2.25	.56	1.25	$3 / 8-16$	
	.7500	.438	.344	1.125	1.000	2.50	.69	1.38	$3 / 8-16$	
	.8750	.438	.344	1.125	1.000	2.50	.75	1.50	$3 / 8-16$	
	1.0000	.438	.344	1.125	1.000	2.50	.81	1.62	$3 / 8-16$	

Note: Screw and Dowel Locations $\pm .005$.

Catalog Number				
Type	D	L	E	Screw Size
HRS	.5000	1.88	.562	$3 / 8-16$
	.6250	2.00	.625	$3 / 8-16$
	.500	2.12	.688	$3 /-16$
	.8750	2.38	.750	$1 / 2-13$
	1.0000	2.38	.750	$1 / 2-13$
	1.2500	2.62	.812	$1 / 2-13$

Note: Screw and Dowel Locations $\pm .005$.

Classified shapes (83 common shapes, no detailing required) are available on all punches and matrixes, as indicated in this catalog. The 83 available common shapes are shown here and on p.33. Also, see the outside of the pullout tab for notes and drawing references.

Ordering Information

*Corner Dimensions

Dimensions should be the theoretical sharp corners for shapes C22, C24, C34, C61, and C88. However, some reduction of these dimensions will result from fitting the punch and matrix under conditions where the clearance is .0025 or less per side.

+Shape Center

Shapes are centered on the punch shanks as shown. Shapes in guide bushings and matrixes are also centered as shown with the exception of shapes C22 and C34. Due to clearance, the P dimension on these shapes will not be centered.

Triangles/ Trapezoids

C23

C25*

C26

C22* ${ }^{\star+}$

C24*

Flatted Rounds

[^4]
Mono Lobes

Multi Lobes

C19

C20

C60

 C77
C79
Cl:-A
C80

C82

C49 C84

Duo Tees

Classified Shapes

Ordering Information

Reflected View-

Punches and Guides

The reflected view is used for punches and guides. It is the view as seen in a mirror held below a punch or guide in its operating position. It is the same as a plan view from the head end, in which the point shape is shown dotted. A reflected view is shown with solid lines.

Orientation and Locking

The locking device orientation is standard at 0°. For types of locking methods and custom locations, see p. 38 .

Clearance

Normal grinding methods produce (1). 007 max fillet on the punch and 2.007 max fillet on the matrix with matching corner shape on the matrix and punch, respectively. When ordering
 matrixes, please specify punch dimensions and clearance per side (Δ).

Accessories

Retainers

HOW TO ORDER
Specify: Oty
Example: $150 \quad 813109$ (Ball for HRT with .3750 dia.)
28817007 (Dowel for HRS)
$43 \quad 573876$ (Spring for LRE with .2500 dia.)

Catalog Number	Shank Diameter In Inches	Max. Point Length
$\mathbf{8 1 8 0 9 7}$.250	1.12
$\mathbf{8 1 8 1 1 9}$.375	1.31
$\mathbf{8 1 8 1 2 7}$.500	1.56
$\mathbf{8 1 8 1 3 5}$.625	1.56
$\mathbf{8 1 8 1 4 3}$.750	1.56
$\mathbf{8 1 8 1 5 1}$.875	1.56
$\mathbf{8 1 8 1 7 8}$	1.000	1.81
$\mathbf{8 1 8 1 8 6}$	1.250	1.81

Punch Pullers

Dayton Punch Pullers simplify and speed the removal of ball lock punches from retainers. You no longer have to improvise with vise grips or other tools that can slip from the punch, making removal difficult or hazardous.
Dayton Punch Pullers are made of high-grade alloy steel and are heat-treated and precision machined for long, reliable service. Dayton Punch Pullers, which can improve performance and save downtime, are available in shank sizes from . 250 " to 1.250 ".

HOW TO ORDER

Specify: Qty. Product \#
Example: 3818097 (250 shank diameter with 1.12 max point length)

Removes ball lock punches quickly and easily

Insert release tool and pull down.

Ball Release Tools

Shim/Backing Plate

HOW TO ORDER		
Specify:	Qty.	Product \#
Example:	2	URSP 1318

	Thickness T	
D	.189 (Rc54-56)	. $\mathbf{0 7 1}$ (Soft)
$\mathbf{2 5}$	URBP 0648	URSP 0618
$\mathbf{3 7}$	URBP 1048	URSP 1018
$\mathbf{5 0}$	URBP 1348	URSP 1318
$\mathbf{6 2}$	URBP 1648	URSP 1618
$\mathbf{7 5}$	URBP 2048	URSP 2018
$\mathbf{8 5}$	URBP 2248	URSP 2218
$\mathbf{1 0 0}$	URBP 2548	URSP 2548
$\mathbf{1 2 5}$	URBP 3248	URSP 3248

EDM Matrix Blanks

HOW TO ORDER

Specify:	Oty.	Type	D Code	L	P	Steel
Example:	6	KDE	37	100	XP. 020	M2
	5	KDU	50	112		M2

Standard "P" will be provided, unless otherwise specified.

Body		K_U		K_E												
Dia.	Std. P	Optional P		Std. P	Optional P		B	R	. 75	. 87	. 93	1.00	1.12	1.25	1.37	1.50
. 2500	. 031	. 020	-	. 031	. 020	-	. 15	. 156	75	87	93	100	112	125	137	150
. 3125	. 031	. 020	-	. 031	. 020	-	. 25	. 191								
. 3750	. 031	. 020	-	. 031	. 020	-	. 25	. 228								
. 4375	. 031	. 020	-	. 031	. 020	-	. 25	. 281								
. 5000	. 062	. 020	-	. 031	. 020	-	. 25	. 312								
. 6250	. 062	. 020	. 031	. 093	. 020	. 031	. 25	. 391								
. 7500	. 062	. 020	. 031	. 093	. 020	. 031	. 31	. 468								
. 8750	. 062	. 020	. 031	. 093	. 020	. 031	. 31	. 578								
1.0000	. 062	. 020	. 031	. 093	. 020	. 031	. 31	. 703								
1.2500	. 062	. 020	. 031	. 125	. 020	. 031	. 37	. 828								
1.5000	. 062	. 020	. 031	. 125	. 020	. 031	. 37	1.093								
1.7500	. 125	. 020	. 031	. 125	. 020	. 031	. 37	1.430								
2.0000	. 125	. 020	. 031	. 125	. 020	. 031	. 37	1.630								
2.2500	. 125	. 020	. 031	. 125	. 020	. 031	. 37	1.830								
2.5000	. 125	. 020	. 031	. 125	. 020	. 031	. 37	2.030								
2.7500	. 125	. 020	. 031	. 125	. 020	. 031	. 37	2.230								

FIRM DELIVERY SCHEDULE
Standard P 1 Day
Larger P 3 Days
1.7500 and up (any P) 4 Days

Features/Benefits

Select either round KDU EDM Matrix Blanks or round KDE Matrix Blanks. Relief hole (P) provides sufficient clearance for slug removal during the stamping process in both types.

KDU Blanks are provided with a small straight through hole. They are commonly used for wire and vertical EDM operations. There are two key advantages with this type of blank: in wire cutting, a tapered relief can be cut instead of a round straight relief; in conventional EDM applications, you can customize the size of the relief to the shape you are cutting.

KDE Blanks are used with conventional (vertical) EDM machines. The hole (P) is used to introduce dielectric to the spark gap for flushing away eroded particles of steel. For the fastest delivery, use the hole (P) dimension given in the chart. If another hole is desired, simply specify "XP," and indicate the dimension.

The Engineered Clearance

Perforating punch-to-matrix clearances in metal stamping dies has been universally expressed as a percentage of stock thickness, and for clarity should be articulated as percent per side ($\Delta=$ clearance per side).

Standard practice has called for $\Delta 5 \%$, and is commonly known as "regular clearance." Regular clearance has been applied almost universally to all applications involving the perforation of ferrous materials.

Jektole ${ }^{\circledR}$, the Engineered Clearance, is approximately twice regular clearance, i.e., $\Delta 10-12 \%$. This means greater productivity, improved maintenance, and a better return on your tooling investment.

In addition, clearances of up to Δ 50% are not uncommon with some hard materials. Clearance tests have been performed by Dayton Progress to prove that increasing the clearance does not lessen hole quality-a common thought by some designers and engineers. Dayton clearance tests do, in fact, prove that the Jektole ${ }^{\circledR}$ Engineered Clearance provides many advantages and benefits.

Jektole ${ }^{\circledR}$ In Production

- Requires less press tonnage
- Reduces the pressure required to strip the punch, which, in turn, reduces punch wear
- Produces minimal burr
- Doubles-often triples-piece output per grind
- Reduces total punch costs

Jektole ${ }^{\circledR}$ In Maintenance

- Keeper Key holds pin in retracted position (see photo at left)
- Eliminates the need for disassembly before grinding
- Helps maintain proper pin extension
- Reduces downtime for regrinding

Standard Jektole ${ }^{\circledR}$ Data							
DIMENSION		J2*	J3	J4	J6	J9	J12
Std. Shank Dia.	D	. 250	. 250	. 375	$\begin{aligned} & .500 \\ & .625 \end{aligned}$	$\begin{array}{r} .750 \\ .875 \\ 1.000 \end{array}$	1.250
Point Hole Dia.	C	. 020	. 032	. 046	. 063	. 094	. 125
Shank Hole Dia.	E	. 086	. 109	. 141	. 172	. 221	. 275
Pin Extension		. 030	. 030	. 060	. 060	. 060	. 060
Keeper Key No.	920045				920053		**

Jektole $^{\circledR}$ Design Limits							
DIMENSION	J2	J3	J4	J6	J9	J12	
Min. Shank Dia.	D	.172	.218	.382	.344	.442	.552
Min. Point Dia.	P	.040	.064	.092	.126	.188	.250
Max. Point Lgth.	B	1.25	1.50	1.62	1.62	1.62	1.62

Universal Jektole ${ }^{\text {® }}$ Components							
EJECTOR PINS		J2	J3	J4	J6	J9	J12
Overall Length	L	1.11	1.38	1.94	1.94	2.22	2.22
Pin Diameter	D	. 017	. 027	. 041	. 058	. 089	. 120
Head Diameter	H	. 048	. 073	. 094	. 120	. 156	188
Hd. Thickness	T	. 031	. 047	. 062	. 062	. 094	. 094
SPRINGS		J2	J3	J4	J6	J9	J12
Outside Dia.	D	. 081	. 104	. 136	. 167	. 216	. 270
Free Length	L	2.38	2.38	3.19	3.00	3.03	2.56
Pressure (.12"Preload)	s.	. 5	. 75	1	1.5	2	2.5
SCREWS		J2	J3	J4	J6	J9	J12
Screw Size	D	\#3-48	\#5-40	\#8-32	\#10-32	1/4-28	5/16-24
Screw Length	L	. 19	. 19	. 19	. 19	. 25	. 25

Locking Devices

Orientation

The standard ball seat location is at 90°. Alternate locations of $0^{\circ}, 180^{\circ}$, or 270° may be specified at no extra cost. Custom ball seat locations may be specified as "BS" and at the degree required counter-clockwise from 0°. (See drawing on right.)

Views

A plan view is used for the matrix, and a reflected view is used for the punch. The reflected view, a mirror image (see p. 31, "Classified Shapes"), simplifies orientation: All locking devices are in the same position.
Identify as "reflected view" on the punch drawing.

How to Specify

This page shows the most common locking devices available for press-fit matrixes-single flat, double flat, and dowel. Select the type, then add the code to the component description. (See "how to order" box on right.)

Single Flats X2, X5, X8, X9

The standard key flat locking device is at 0°. Specify "X2" (bottom) or "X8" (top) for matrixes.
Alternate locations of $90^{\circ}, 180^{\circ}$, or 270° may be specified at no additional cost. Specify "X2" or "X8" and the degree required.
Example: X2—90

Custom Location

Specify "X5" (bottom) or "X9" (top) and the degree required counter-clockwise from 0°.
Example: X5—135 ${ }^{\circ}$.

Double Flats X3, X6

The double key flat locking device is at 0°. Specify "X3" for matrixes.
Alternate locations of $90^{\circ}, 180^{\circ}$, and 270° may be specified at no additional cost. Specify "X3" and the degree required.
Example: X3—90 .

Custom Location

Specify "X6" for matrixes and the degree required counter-clockwise from 0°.
Example: X6—135 ${ }^{\circ}$.

F Dimension for Flats for Press-Fit Matrixes

Body Dia.	25	37	50	62	75	87	100
F	.110	.165	.220	.270	.325	.380	.435
Body Dia.	125	150	175	200	225	250	275
F	.540	.650	.775	.900	1.025	1.150	1.275

Location Tolerance

Flat		Dowel	
F	Radial	F	Radial
+.0005	$.001 /$	+.0005	$0^{\circ}-4^{\prime}$
-.0000	inch	-.0000	

HOW TO ORDER

Specify:	Qty.	Type	D Code	P (or P\&W)	Steel	Alteration
Example:	5	LAO	$87-100$	P.394, W.209	A2	X2
	9	LAR	$50-125$	P.275, W.092	M2	X83

Additional Flat For Punches and Matrixes

The depth of the flat is taken from the shank, not the head, on punches.

	Code	Depth	Length
$\begin{aligned} & \text { 든 } \\ & \text { 으제 } \\ & 0 \end{aligned}$	X81	. 060	. 500
	X82	. 060	. 625
	X83	. 060	. 750
	X84	. 060	Full Length
	X85	. 093	. 500
	X86	. 093	. 625
	X87	. 093	. 750
	X88	. 093	Full Length
	X89	Specify Dimensions	
$\begin{aligned} & \text { 듳 } \\ & \text { O} \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	X91	. 060	. 500
	X92	. 060	. 625
	X93	. 060	. 750
	X94	. 060	Full Length
	X95	. 093	. 500
	X96	. 093	. 625
	X97	. 093	. 750
	X98	. 093	Full Length
	X99	Specify Dimensions	

Dowel Slots X0, X1, X4, X7, X41, X71
The standard dowel locking device is at 0°. Specify "X4" (. 125 dowel) or "X41" (. 1875 dowel) for matrixes. Specify "X0" ($\mathrm{F}=.5 \mathrm{D}$) for matrixes only. Alternate locations of $90^{\circ}, 180^{\circ}$, or 270° may be specified at no additional cost. Specify "X0," "X4," or "X41" and the degree required.
Example: X4-90 ${ }^{\circ}$.

Custom Location

Specify "X7" (. 125 dowel) or "X71" (. 1875 dowel) for matrixes. Specify " X 1 " ($\mathrm{F}=.5 \mathrm{D}$) for matrixes only. Specify "X1," "X7," or "X71," and the degree required counter-clockwise from 0°.
Example: X71-135 ${ }^{\circ}$.
F Dimension for Dowels
for Press-Fit Matrixes

Body Dia.		25	31	37	43	50	62-275
X0, X1	F	. 1250	. 1562	. 1875	. 2188	. 2500	D/2
X4, X7		. 1625	. 1875	. 2125	. 2375	. 2625	D/2
X41, X71		. 1938	. 2188	. 2438	. 2688	. 2938	D/2

Order example:

X0, X1, X4, \& X7 - . 1250 Dowel X41 \& X71 - 1875 Dowel

Air Hole	I.D.
$1 / 16$	$3 / 16-1 / 4$
$3 / 32$	$5 / 16$
$1 / 8$	$3 / 8-1$

Catalog Number	I.D.	O.D.	L	Pressure at Deflection of		
				1/8	1/4	3/8
USE18-125 USE18-150	3/16	111/16	$\begin{aligned} & 11 / 4 \\ & 11 / 2 \end{aligned}$	$\begin{aligned} & 250 \\ & 230 \end{aligned}$	$\begin{aligned} & 400 \\ & 350 \end{aligned}$	-
USE25-125 USE25-150 USE25-175	$1 / 4$	$3 / 4$	$\begin{aligned} & 11 / 4 \\ & 11 / 2 \\ & 13 / 4 \end{aligned}$	$\begin{aligned} & 280 \\ & 275 \\ & 220 \end{aligned}$	$\begin{aligned} & 475 \\ & 465 \\ & 375 \end{aligned}$	$\frac{-}{490}$
USE31-125 USE31-150 USE31-175 USE31-200	5/16	13/16	$\begin{aligned} & 11 / 4 \\ & 1^{1 / 2} \\ & 1^{3} / 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 320 \\ & 300 \\ & 270 \\ & 240 \end{aligned}$	$\begin{aligned} & 500 \\ & 450 \\ & 400 \\ & 370 \end{aligned}$	$\begin{aligned} & \overline{-} \\ & 575 \\ & 600 \end{aligned}$
USE37-125 USE37-150 USE37-175 USE37-200	3/8	7/8	$\begin{aligned} & 11 / 4 \\ & 1^{1 / 2} \\ & 1^{3 / 4} \\ & 2 \end{aligned}$	$\begin{aligned} & 420 \\ & 385 \\ & 355 \\ & 310 \end{aligned}$	$\begin{aligned} & 695 \\ & 625 \\ & 575 \\ & 515 \end{aligned}$	$\begin{gathered} \overline{-} \\ 760 \\ 670 \end{gathered}$
USE50-125 USE50-150 USE50-175 USE50-200 USE50-225	1/2	1	$\begin{aligned} & 1^{1 / 4} \\ & 1^{1 / 2} \\ & 1^{3} / 4 \\ & 2 \\ & 2^{1 / 4} \end{aligned}$	$\begin{aligned} & 520 \\ & 450 \\ & 435 \\ & 315 \\ & 275 \end{aligned}$	$\begin{aligned} & 790 \\ & 725 \\ & 680 \\ & 510 \\ & 475 \end{aligned}$	$\begin{aligned} & \text { - } \\ & 875 \\ & 650 \\ & 600 \end{aligned}$
USE62-125 USE62-150 USE62-175 USE62-200	5/8	$11 / 8$	$\begin{aligned} & 11 / 4 \\ & 1^{1 / 2} \\ & 1^{3} / 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 600 \\ & 520 \\ & 480 \\ & 440 \end{aligned}$	$\begin{aligned} & 925 \\ & 835 \\ & 775 \\ & 730 \end{aligned}$	$\begin{gathered} - \\ \overline{-} \\ 1000 \\ 935 \end{gathered}$
USE75-175 USE75-200 USE75-225 USE75-250 USE75-275	$3 / 4$	$11 / 2$	$\begin{aligned} & 1^{3 / 4} \\ & 2 \\ & 2^{1 / 4} \\ & 2^{1 / 2} \\ & 2^{3 / 4} \end{aligned}$	$\begin{aligned} & 500 \\ & 400 \\ & 350 \\ & 325 \\ & 300 \end{aligned}$	$\begin{aligned} & 800 \\ & 700 \\ & 650 \\ & 600 \\ & 550 \end{aligned}$	$\begin{gathered} 1200 \\ 1100 \\ 1000 \\ 900 \\ 800 \end{gathered}$
USE87-175 USE87-200 USE87-225 USE87-250 USE87-275	7/8	$13 / 4$	$\begin{aligned} & 1^{3 / 4} \\ & 2 \\ & 2^{1 / 4} \\ & 2^{1 / 2} \\ & 2^{3 / 4} \end{aligned}$	$\begin{aligned} & 1500 \\ & 1200 \\ & 1150 \\ & 900 \\ & 850 \end{aligned}$	$\begin{aligned} & 2200 \\ & 1900 \\ & 1850 \\ & 1450 \\ & 1350 \end{aligned}$	$\begin{aligned} & 3400 \\ & 2800 \\ & 2400 \\ & 1900 \\ & 1800 \end{aligned}$
USE100-175 USE100-200 USE100-225 USE100-250 USE100-275	1	2	$\begin{aligned} & 1^{3 / 4} \\ & 2 \\ & 2^{1 / 4} \\ & 2^{1 / 2} \\ & 2^{3 / 4} \end{aligned}$	$\begin{aligned} & 2000 \\ & 1600 \\ & 1400 \\ & 1200 \\ & 1000 \end{aligned}$	$\begin{aligned} & 3000 \\ & 2600 \\ & 2300 \\ & 2000 \\ & 1800 \end{aligned}$	$\begin{aligned} & 3500 \\ & 3400 \\ & 3200 \\ & 3000 \\ & 2800 \end{aligned}$

Features/Benefits

Dayton's durable, yet flexible, Urethane Strippers provide superior stripping over conventional strippers; develop higher load-bearing capacity due to the use of a unique curing agent; are tear- and oil-resistant; provide exceptional dampening of the punch, thus eliminating premature punch failure due to vibration; and are easy to install and replace.
Strip-shape Dayton Urethane Strippers assure positive stripping and dampen punch vibration by gripping around the punch point. The closed-end feature holds the thin stock flat during the stripping cycle, and helps eliminate the potential for rejected parts.

HOW TO ORDER
Specify: Oty. Type I.D. L Example: 12 USE 37125

Dayton Progress Corporation
500 Progress Road
P.O. Box 39
Dayton, OH 45449-0039 USA
Dayton Progress Portland
1314 Meridian St.
Portland, IN 47371 USA
Dayton Progress Canada, Ltd.
861 Rowntree Dairy Road
Woodbridge, Ontario L4L 5W3
Dayton Progress, Ltd.
G1 Holly Farm Business Park
Honiley, Kenilworth
Warwickshire CV8 1NP UK
Dayton Progress Corporation of Japan
2-7-35 Hashimotodai
Sagamihara-Shi, Kanagawa-Ken
229-1132 Japan
Dayton Progress GmbH
Im Heidegraben 8
Postfach 1165
61401 Oberursel/Ts., Germany
Dayton Progress Perfuradores Lda
Zona Industrial de Casal da Areia Lote 17 17
Cós, 2460-392 Alcobaça, Portugal
Dayton Progress SAS
105 Avenue de l'Epinette ette
BP 128
Zone Industrielle
77107 Meaux Cedex, France
Federal Signal Tool (Dongguan) Ltd.
Bu Bu Gao Avenue, Jiang Bei
Wusha Community, Changan
Dongguan, ChinaDayton Progress Czech sro
Hala G
Pražská 707
CZ-294 71 Benátky nad Jizerou
Czech Republic

[^0]: Multi-Position ${ }^{\text {TM }}$ is a trademark of Dayton Progress Corporation.

[^1]: True Position ${ }^{\circledR}$ is a registered trademark of Dayton Progress Corporation.

[^2]: ®True Position is a registered trademark of Dayton Progress Corporation.

[^3]: ${ }^{\text {TM }}$ EZ Fit is a trademark of Dayton Progress Corporation. Mfg. under Patent No. 6,679,147.

[^4]: ** Now standard. See product pages.

